Doc.Ing.Miloš Vlk,CSc.

MEZNÍ STAVY A SPOLEHLIVOST
PŘEDMLUVA

Toto skriptum je určeno jako základní pomůcka pro studium stejnojmenného předmětu ve specializaci Počítačové navrhování strojních soustav, může však být též doplňkovým textem v problematice mezních stavů i v jiných specializacích. Vytváří teoretické zázemí a předpoklady pro kvalifikované rozhodování při řešení praktických problémů technické praxe. Vzhledem k tomu, že uvedená problematika je v tomto pojetí a rozsahu u nás zpracována poprvé, bude autor vděčen za připomínky a náměty k dalšímu zlepšení.

V Brně, v červenci 1991

Doc. Ing. Miloš Vlk, CSc.
1. ÚVOD

Cíle vědomé úsilí projektantů, výpočtářů, konstrukterů, technologů (a pracovníků řady dalších profesí) by mělo směřovat k tomu, aby konečný výsledek jejich práce (součástí, uzel, celá konstrukce) splňoval v potřebné míře celou řadu na něj kladek požadavků. Především to znamená plnit řádně svoji požadovanou funkci po předepsanou dobu života. Tato funkce však musí být též efektivní, ekonomická a což je v současné době především zdůrazňováno – též ekologická. Konstrukce musí dále respektovat zásady technologií a to nejen výroby, ale též montáže, kontroly a oprav. Jen tak bude konkurenceschopná a zajistí svému výrobci i uživateli očekávaný dostatečný přínos.

Zajistit splnění těchto požadavků není v současné době zdaleka jednoduchou úlohou. V průběhu posledních desetiletí je patrný výrazný vzrůst specifických výkonů strojů a zařízení, pracovních teplot i snahy o snižování spotřeby materiálu a energie na jejich výrobu i provoz. Tyto skutečnosti vedou mimo jiné ke zvyšování úrovně namáhání a to mnohdy především k růstu časově proměnné složky tohoto namáhání. Odhaduje se [2], že na počátku tohoto století nepřekračovala průměrná výpočtová napětí u ocelových konstrukcí úroveň 50 MPa, v polovině tohoto století dosahovala běžně 100 MPa, v současné době se nominální napětí často pohybuje v rozmezí 250 až 300 MPa. Vedle toho se však – v souvislosti jak s rostoucími rozměry polotvarů, tak i s širokým uplatňováním technologie svařování – též zvýšilo množství a velikost makroskopických vad materiálu a hladiny zbytkových prutů. Postupně se ukazovalo nezbytným zavádění nových druhů ocelí se zvýšenými mezerami kluza a mezemi pevnosti. Tyto materiály však jsou zpravidla citlivější na dodržení předepsané výrobní technologie a s tím souvisejícím vznikem vad. Vedle toho je těžko mít též na zřeteli, že mimořádné zvýšení jedné mechanické charakteristiky ještě nemusí znamenat vyšší kvalitu materiálu při komplexním posuzování vzhledem k možným neznámým stavům: tak např. zvýšení meze pevnosti ocelí je doprovázeno obecně též zvýšením jejich vrubové citlivosti; nebo výrazné zvýšení meze kluze v poměru k mezi pevnosti (až např. na poměr 0,9) snižuje u této oceli plastickou rezervu. Avšak i tak se při uplatnění všech metalurgických a technologických vymožení nepodařilo zvýšit pevnost více než třikrát. Z toho plynuváního porovnání je tedy zřejmé, že zde již není zdaleka tak velká rezerva v materiálových vlastnostech jako tomu bylo dříve. Potom ale též některé faktory dříve nepodstatné a dříve nezajímavé se budou nutně měnit významně a někdy i určující.

Uvedená souvislost je těžko dále též hodnotit se zřetelem na důsledky případných selhání a havarií strojů a zařízení. Skody hmotné, na zdraví a životech lidí i ekologické nelze sice v řádném případě zležovat a přehližet, v řadě případů (např. jaderná energetika, letecká doprava aj.) by měly hrát přímo určující roli.

V souladu se vzrůstajícími nároky na vlastnosti navrhovaných konstrukcí se (mimo jiné) mění výrazně i metody jejich pevnostního posuzování nebo – obecněji – metody teoretického průzkumu jejich spolehlivosti. Postupem doby zde docházelo k zásadním změnám v jejich přístupech a pojetích.

Zhruba do počátku tohoto století se běžně materiál uvažoval jako homogenní izotropní kontinent – tedy bez vůli vlivu struktury a existence vzd. Většina výpočtů uvažuje pouze elastickou oblast zatížení. Při přechodu do elastoplastického stavu se tento proces chápá spojity, zvětšující se na velikosti napětí. Uvažuje se užívek lokálních plastických deformací, pozorovatelných i při homogenní
napjetostí u taženého hladkého vzorku. Vliv složitého, v čase proměnného, provozního zatížení je do posouzení zahrnován zjednodušené, bez zřetele na jeho historii.

V prvé polovině tohoto století jsou stále více pozorovány rozpory mezi uvažovanými předpoklady a praktickými zkušenostmi z provozu i laboratorních zkoušek. Především se jako důležitý faktor ukázal počet změn cyklického zatížení a to v obou nejdůležitějších etapách procesu porušování - v etapě iniciace trhliny a v etapě růstu trhliny (ať již iniciované cyklickým zatížením nebo některým technologickým pochodem u vady typu trhliny). Začíná se tak intenzivně studovat problematika mechanické únavy kovů a jejich slitin. Uskutečňují se rozsáhlé experimentální programey, získává se řada empirických podkladů úspěšně využívaných v inženýrské praxi.

Popis probíhajících procesů zůstává převážně pouze na fenomenologické úrovni. Způsob posouvání se nejprve zásadně nemění. Formulují se materiálové charakteristiky vyjadřující jisté pravdivé hodnoty namáhání, při jejichž podrobení již nedochází k pozorovatelnému poškozování; při cyklickém zatížování je to mez únavy (mezní hodnoty horního a dolního napětí kmitu při nichž ještě nedošlo k lomu nebo jinému únavovému porušení do základního počtu kmitů, zvoleného pro stanovení mez únavy), pro zatížení za vysokých teplot to je mez pevnosti při tečení (= napětí, při němž dojde při dané teplotě k porušení za stanovenou dobou) a mez tečení (= napětí, při němž je při dané teplotě dosaženo předepsané plastické deformace za stanovenou dobou). Postupem doby se však ukazuje stále zřetelněji konzervativní pevnostní posouzení založených na těchto charakteristikách a nehospodárnost takto navržených konstrukcí. Přechází se k navrhování dílců, užlů nebo i celých konstrukcí na omezenou dobu života vyplyňující z technicko-ekonomických požadavků a kriterií. Studují se zákonitosti hromadění poškození v konstrukcích jako jejich odevzdy na (větší náhodnou) provozní zatížení. Vzniká celá řada hypotéz – více či méně komplikovaných, výstižnějších a vhodnějších pro praktické využití – jak v oblasti únavy materiálu, tak i creepu. Stále však přetravávají problémy související s přenosem experimentálních výsledků získaných na malých laboratorních vzorcích na reálné konstrukce; vystižení vlivu velikosti a mnohdy složitého tvaru (promítajícího se do rozdílného stavu a charakteru napjetostí) a vlivu výrobek technologie na mezní stav konstrukce je komplikované a převážně zůstává pouze na úrovni empirických poznatků.

Ve spojení s výrazným rozšiřením technologie sváčování u rozmanitých ocelových konstrukcí pracujících i za snížených teplot se ve větší míře začínají objevovat další významné mezní stav porušení – křehký lom. Dochází tak ke zdůraznění významu existence vod typu trhlin a transzitního chování ocelí nízké a střední pevnosti (jejichž porušení má buď houževnatý nebo křehký charakter).

Kvalitativní změny v rozvoji mezních stavů dochází v padesátých letech. Tehdy bylo nachromázděno velké množství poznatků; ke značné dokonalosti byla vybudovala teorie dislokací a použita jako základna pro mikrofyzikální interpretaci plastické deformace. Získané poznatky byly využity pro zlepšení mechanických vlastností kovových materiálů. K tomu přispěly též nové účinné pozorovací a analytické metody založené na elektronovéoptice, diffrakci a spektroskopii různých druhů záření. Objevily se dokonce též názory, že na základě studia struktury lze očekávat v blízké budoucnosti vypracování fyzikální teorie mechanických vlastností tak podrobně, aby postavila výrok o využívání kovových materiálů zcela na vědecký základ. Tyto optimistické názory však nebyly později potvrdeny. Nesporným přírodom se však ukazuje komplexní studium problémů a to jak z hlediska materiálové vědy, tak i materiálového inženýrství, kdy dochází k využití interakcí mezi mikrofyzikální
kálními poznatkými o struktuře, poznatkými o vlastnostech materiálu a poznatkými o jeho chování v provozu.

Společným nedostatkem do té doby užívaných poněkud státních výpočtů bylo téměř to, že neuvážovaly v materiálu jeho nespojitosti (a tedy rovněž jejich významnou kategorii - važné typy trhlin). Celý proces porušování byl dosud uvažován jako jednotepný. Charakteristickým rysem tohoto období rozvoje mezních staveb je respektování dvou základních etap předcházejících lomu jakéhokoliv druhu a to etap nukleace (vzniku) a růstu trhliny (obr. 1). V první z nich se objevují v okolí počátečních makroskopických vad v důsledku nevratných deformací (při mechanické nebo tepelné únavě, creepu ap.) trhlinky, z nichž se potom vytváří (obvykle jediná) magistrální trhлина. Její chování (následný růst) je různé v závislosti na teplotě, rychlosti zatěžování, době působení, charakteru prostředí ap. Pro možnost kvantitativního popisu tohoto procesu vzniká a rozvíjí se ložová mechanika různých koncepce - nejprve lineárně elastická, později různé elastoplastické koncepce. Vedle tohoto poškozování, probíhajícího v lokalizovaných oblastech, dochází často i k degradaci mechanických vlastností, promítající se do pokusu kritické délky trhliny. S tím souvisí i pokles homogenností se týká větších objemů materiálu. Je využitelným deformácím nebo preciptačním stárnutím, interkrystalickou korozí, radiacioním ozářením ap. Tento proces degradace mechanických vlastností též způsobuje zvýšení tranzitních teplot. Prodloužení doby života konstrukce lze potom dosáhnout:

- změněním počáteční velikosti trhliny \(a_0 \) (např. změnou technologie nebo přesnějším požadavkům výsledků defektoskopické kontroly),
- prodloužením etapy vzniku trhlin schopných růstu z počátečních vad (zvýšením odolnosti materiálu proti vzniku poruch souduznosti),
- snížením rychlosti růstu trhliny (např. volbou vhodných vlastností materiálu, úpravou geometrie, při creepu pak snížením provozní teploty),
- zvýšením počátečního rychlosti nukleace (např. výběrem materiálu nebo zvýšením provozní teploty),
- snížením rychlosti stárnutí (podle povahy procesu stárnutí a provozních podmínek).

V souvislosti s existenci nejen náhodného charakteru zatížení, ale též náhodné odevzdy materiálu na ně (chápané však ve smyslu poškození, nikoliv pouze jako napěťová deformace odevzdy) vznikají a rozvíjí se snahy o statistickou interpretaci probíhajících procesů. Na ně pak navazují úsilí o vyjádření spolehlivosti konstrukce kvantifikací určité pravděpodobnosti bezporuchového provozu po jistou dobu života (obr. 2). V současném komplexnějším pohledu je provozní spolehlivost považována za obecnou vlastnost výrobku plnit během stanovené doby požadované funkce při zachování provozních parametrů daných technickými podmínkami.

Byl též položen základ pro diagnostiku porušení (resp. nauku o zjišťování celkového technického stavu zařízení) - např. pomocí metody akustické emise, měření rychlosti zvětšování ultrazvukového signálu v místě vady, sledováním lokálního ohřevu materiálu ap. V širším významu pak pod určením stavu technického objektu
fyzikální vysvětlení příčin lomů

materiálové charakteristiky
odolnosti materiálu vůči lomu

přenos informací
ze vzorku na dílo

provozní spolehlivost konstrukce
za různých provozních podmínek

Obr. 2

zahrnujeme:
- vlastní technickou diagnostiku, zabývající se zjišťováním stavu technického objektu v přítomnosti,
- technickou prognostiku, řešící problematiku předvidání technického stavu za určitý časový (nebo jinak definovaný) úsek života objektu. Patří sem též úlohy určení periodicity jeho pravidelných prohlídek a oprav;
- technickou genetiku zkoumající stav, ve kterém se nachází objekt v určité době v minulosti. To přichází v úvahu při vyhodnocování havarií a jejich příčin.

Je zřejmé, že diagnóza (= znalost okamžitého stavu objektu) je nezbytná jak pro genezi, tak pro prognózu.

To vše - navíc ještě ve spojení s moderními metodami výpočtu napjatostí a přetvoření - umožnilo pro některé případy navrhovat a provozovat konstrukce i s místními plastickými deformacemi a různými druhy vad (včetně vad typu trhlin).

Technická diagnostika zahrnuje a předpokládá řešení řady otázek:
- analýzu konkrétních objektů; ta je spojena s prostudováním normální činnosti objektu, určením prvků objektu a jejich vazeb a možných poruch, určením možných stavů objektu (možných kombinací poruch prvků), analýzou technických možností zjišťování příznaků charakterizujících stav objektu, rozpracováním metod měření, sběrem a spracováním statistických materiálů;
- analýzu a návrh odpovídajících modelů objektů a diagnostických prostředků; to zahrnuje rozpracování metod sestřežení diagnostických testů pro vyhledání poruch prvků a sestavení optimálních diagnostických programů;
- výzkum a sestřežení konkrétních diagnostických zařízení. Zde je cílem seznámení se s existujícími diagnostickými zařízeními a s principy jejich projektovaní, zhodnocení diagnostických zařízení z hlediska rychlosti operací, spolehlivosti, věrohodnosti diagnozy ap., zhodnocení účelnosti a ekonomické efektivnosti navrženého stupně automatizace diagnostického procesu.

Zatím se však často projektuje současně technické soustavy bez uvažování požadavků diagnostiky. Přitom používání diagnostických metod a prostředků jak při výrobě, tak i v provozu se stává stále více běžným jevem, zejména s ohledem na vzrůstající složitost a technickou náročnost stojů a zařízení.
2. MEZNÍ STAVY MATERIÁLŮ A KONSTRUKCÍ

2.1 POJEM "MEZNÍ STAV"

V průběhu existence jakékoliv součásti nebo zařízení můžeme rozlišovat etapy výroby, montáže, zkoušení, provozu a vyřazení z provozu (dočasně nebo trvalé). Od výchozí až do konečné etapy pak prochází různými stavy; z hlediska našeho zájmu jsou důležité takové stavy, při jejichž dosažení se mění kvalitativní vlastnosti materiálu a vlastnosti cílové, užívající konstrukce jako celku - tyto stavy nazýváme hraniční stavy. O hraničních stavech materiálu můžeme hovořit např. v souvislosti s pohyby dislokací (vznik plastické deformace), nukleací mikrotrhlin a různými fáziemi jejich růstu. Příklady hraničních stavů konstrukce jsou např. jednotlivé fáze montáže, vymezení vůli, změny tvarové určitosti konstrukce a počtu stupňů volností.

Je zřejmé, že hraniční stavy mohou být velmi rozdílné a to jak z hlediska svého charakteru, tak i významu pro další použitelnost konstrukce. Tu skupinu hraničních stavek, které mohou způsobit vyřazení konstrukce z provozu, lze označit jako mezní stavy.

Velmi podobná je následující definice založená rovněž na materiálové - technologicko-konstrukčním principu: mezní stav je stav materiálu nebo součásti, při kterém v důsledku malé změny vnitřních nebo vnitřních faktorů a doby jejich působení, případně kombinací vnějších nebo vnitřních faktorů určitý kritické velikosti a doby jejich působení zrůstí materiál nebo součást skokem funkční a užitné vlastnosti, případně postupná změna funkčních a užitých vlastností materiálu dosáhne kritické hodnoty.

Podstatně obecnější je definice v ČSN 01 0102 - Názvosloví spolehlivosti v technice. Podle ní je mezní stav takový stav objektu, ve kterém musí být další využití objektu přerušeno pro
- neodstranitelné poruše bezpečnostních požadavků, nebo
- neodstranitelné pětkrocení předepsaných mezi stanovených parametrů, nebo
- neodstranitelné snížení efektivnosti provozu pod přípustnou hodnotu, nebo
- nutnost provedení generální opravy.

Uvedeme si některé příklady mezních stavů:
1. automobil:
 a) nevyhovuje požadavkům vyhlášky o podmínkách provozu vozidel na pozemních komunikacích (např. nedostatečná účinnost brzdové soustavy),
 b) nevyhovuje již majiteli vzhledem k vysoké spotřebě a nízkému výkonu,
 c) je zastaralý po stránce estetické, vybavenosti a pohodlnosti jízdy,
 d) je nepojízdný v důsledku havárie;
2. oběžný kotouč turbíny;
 a) došlo k jeho porušení v průběhu jeho lisování na hřídeli nebo za provozu,
 b) vyskytly se nadměrné deformace lopatek vedoucí až k vymezení vůle mezi rotorom a skříní turbíny,
 c) vyskytly se lomy některých lopatek,
 d) došlo k uvolnění kotouče na hřídeli;
3. vřeteno obráběcího stroje:
 a) velikosti průřezových deformací překročily přípustnou hodnotu vyplývající z požadavků na přesnost stroje,
b) objevily se trvalé deformace,
c) opotřebení dosáhlo takové velikosti, že vzniklé vůle nedovolily dosažení požadované přesnosti stroje,
d) zadřelo se ložisko,
e) prasklo vřeteno.

Vyřazení konstrukce z provozu nastane po dosažení jednoho mezního stavu. Je lhostejné, který z nich to bude – to závisí na konkrétních podmínkách. U dané třídy konstrukcí lze vyjmenit jistý soubor mezních stavů, které jsou u ní možné. Potom lze mezní stav konstrukce vymezit jako stav, který může být z hlediska funkce pro předepsanou povahu a délku služby nepřípustný [41]. Takováto představa o souboru možných mezních stavů tak vede k úvahám a rozborům pokud možno všech situací, které se mohou vyskytnout v budoucím provozu. Zabrání se tak zrušenímu chápání a zaměření se pouze na jediný mezní stav – např. ideálně plastické únosnosti. Chování konstrukce se tímto zřízením chápe komplexně z hlediska systému v němž pracuje a spoluurčuje jeho provozní spolehlivost.

Dosažení mezního stavu závisí na dynamice hromadného poškození, které je funkcí substrukturního a strukturního stavu materiálu, technologických a konstrukčních charakteristikách výroby, podmínkách jeho využívání a především doby působení, velikosti a průběhu faktorů vyvolávajících (samý o sobě nebo v interakci) mezní stav.

Příčiny, mající na důsledku vznik mezního stavu, lze členit na vnější a vnitřní.

a) Vnějšími faktory jsou:
- mechanické zatížení (stálé, proměnné – statické, dynamické, rázové; důležitá je rychlost zatížení a jeho časový průběh),
- teplota (od kryogenních teplot až po creepové případně i vyšší),
- prostředí (chemicky neutrální nebo agresivní, ovlivňující povrch nebo objem materiálu),
- energetická pole (neutronové, magnetické, elektrické),
- porušení provozních předpisů,
- chyby v organizaci práce,
- chybná manipulace,
- porušení výrobních předpisů,
- nesprávné seřízení,
- požár.

b) Vnitřními faktory jsou:
- nevhodná volba materiálu (jeho chemické složení, tepelné, chemické, chemicko-tepelné, tepelně-mechanické zpracování),
- vada materiálu,
- vada svaru,
- zámena materiálu,
- nevhodná konstrukce,
- nevhodná technologie,
- nedodržení technologie,
- nedostatky při výrobě,
- nedostatky při montáži,
- nedodržení kvality práce.
2.2 KLASIFIKACE MEZNÍCH STAVŮ

Pro další členění rozmanitých mezních stavů můžeme použít rozličných hledisek (4):

1. podle charakteru změny vlastností soustavy jsou mezní stavy (MS):
 a) kvalitativní - dochází ke kvalitativní změně fyzikálně mechanických vlastností soustavy (např. u automobilu to je havárie),
 b) kvantitativní - dochází ke kvantitativní změně některého z parametrů do takové míry, že se stává nepřípustným (např. rovněž u automobilu to může být nepřípustně dlouhá brzdná dráha); přípustnost příslušných parametrů je určena požadavky funkčními, ekonomickými, provozními, konkurenčními, bezpečnostmi práce, kultury pracovního prostředí, chování společnosti apod.

2. podle charakteru rozhodujících faktorů jsou MS:
 a) společenské - např. morální opotřebení, exhalace, hluk,
 b) technické;

3. podle časového průběhu jejich vzniku jsou MS:
 a) okamžité - vznik MS závisí pouze na okamžitých hodnotách určujících parametrů soustavy, zatěžování a provozních podmínek; velikost těchto parametrů se mohou měnit s časem. Příkladem může být dosažení MS pružnosti při monotonním zatěžování, jestliže napětí dosáhne meze kluzu (i když ta třeba klesá v důsledku stárnutí).
 b) kumulativní - MS je určen časovým průběhem určujících parametrů a to z východího do mezního stavu. Tak je tomu např. při cyklickém zatěžování vedoucím k dosažení MS únavového porušení.

4. hledisko následnosti MS

 Bylo již uvedeno, že u určité třídy konstrukcí se může vyskytnout celý soubor mezních stavek; pouze jeden z nich je však určující - je to poslední v posloupnosti mezních stavek, který u dané konstrukce a pro dané zatěžovací podmínky způsobí výřazení konstrukce z provozu.

 Potom můžeme hovořit o MS:
 a) disjunktivních - to jsou takové MS, z nichž může vzniknout pouze jeden z nich; jestliže jeden vznikne, tak druhý MS je již nedosažitelný (i když je možný pro danou třídu konstrukcí). Tak ve shora uvedeném příkladu oběžného kotouče turbíny jsou stavy b, c disjunktivní stavy; dojde-li k vymezení vůle je konstrukce výřazena z provozu a nemůže již dojít k tomu lopatky.
 b) následných - druhý MS může nastat až po dosažení předchozího MS. Příkladem mohou být u vedene obráběcího stroje stavy a, b - nepřípustné pružné deformace a pak deformace trvalá;

5. hledisko reálnosti MS

 Okamžitý a dokonalý popis mezních stavek konstrukce je velice obtížný. Proto se často při posuzování spolehlivosti zaměřujeme na mezní stavy výpočetového modelu konstrukce. Potom je možno rozlišovat:
 a) MS skutečné - vztahuji se ke skutečné konstrukci, kterou mohou vyřadit z provozu. Příkladem jsou třeba mezní stavy při nichž dochází k lomům;
 b) MS výpočtové - jsou používány jako výpočetové modely skutečných, ale obtížně popsatelných mezních stavek. Tyto výpočtové MS u skutečné konstrukce buď neexist-
tuji nebo nezpůsobi její vyřazení z provozu.

6. z hlediska následků plynoucích z dosažení mezního stavu můžeme rozlišovat MS:
 a) havarijní – dochází k nežádoucí destrukci,
 b) bezpečnostní – dochází k porušení určitě – k tomu určené – části (pojistky pro-
 tí přetížení); předejde se tak dosažení MS významné konstrukce,
 c) nenavarovní – nedochází k nežádoucí destrukci, avšak konstrukce nemůže pracovat
 buď vůbec nebo pouze nouzově;

7. z hlediska situace po odstranění příčin vyvolávajících mezní stav můžeme rozest-
 značit MS
 a) vratné – po odstranění těchto příčin mizí i důsledky dosaženého mezního stavu.
 Jako příklad si představme tažený prut, v němž napětí dosáhlo právě meze klužu;
 po odležení nejsou patrné (při zjednodušené představě) žádné trvalé deformace;
 b) nevratné – důsledky mezního stavu zůstávají i po odstranění příčiny. Tak je tomu
 např. u přetížené tyče po jejím odležení.

2.3 MEZNÍ STAVY V PEVNOSTNÍCH VÝPOČTECH

Z celého souboru možných mezních stavů strojírenských konstrukcí se zaměříme
pouze na ty, které souvisejí s jejich deformacemi a pevností. Tyto mezní stavy bu-
deme označovat jako MS v pevnostních výpočtech. Jejich základní charakteristiky by-
ly již probírané v předmětu Pružnost a pevnost [9]. Zde si jejich výklad poněkud
rozšíříme a poukážeme na další souvislosti.

Při posuzování mezního stavu konstrukce (zařízení) je třeba brát v úvahu, že
se skládá z celé řady podsoustav a jednotlivých částí. Podle charakteru konstrukce
a vazeb mezi součástmi pak např. lom jedné součásti může (ale také nemusí) ovlivnit
funkci celého zařízení (to souvisí s druhem použité konstrukční filozofie). Podle
toho je (nebo není) mezní stav součásti též mezním stavem celé konstrukce. V kaž-
dém případě však mezní stav součásti signalizuje nebezpečí pro dosažení mezního
stavu celé konstrukce.

1. MS deformace

Jednotlivé konstrukční díly a uzly se při svém mechanickém a teplotním zatí-
žení deformují – dochází ke změně rozměrů, tvaru, uložení (vůli nebo přesahů). Po-
kud jsou tyto deformace v takových mezních, aby zařízení pracovalo v souladu se sta-
novenými technickými podmínkami (vztahujícími se např. k přesnosti výrobků, pohyb-
livosti soustavy apod.), mluvíme o funkčně přípustných deformacích. Opakem jsou po-
tom funkčně nepřípustné deformace. Přechod mezi nimi charakterizuje mezní stav de-
formace, kdy se deformace funkčně přípustné mění na deformace funkčně nepřípustné.

2. MS pružnosti

Jestliže po skončení cyklu zařízení – odležení nejsou pozorovány žádné trvalé
deformace, jestliže tedy deformace je vratná, jednalo se o deformace pružné. V opa-
čném případě – objeví-li se trvalé (nevratné) deformace, označují se jako deformace
plastické.

Došlo k úroveň rozlišitelnosti při sledování těchto jevů. Mikroplastické
deformace jsou doprovázeny vysokou heterogenitou a lokalizací do submikroskopických
rozměrů (do oblastí oca 10^{-4} až 10^{-6} m), nepřevyšují velikost 1 t. Makroplastické deformace vznikají tehdy, jestliže napětí nebo deformace překročí kritické charakteristiky (význámě ovlivňované teplotou a rychlostí deformace). Jsou doprovázeny změnami tvaru, rozměrů i vlastností materiálu nebo součástí.

MS pružnosti je potom definován jako stav, při jehož překročení vznikají makroplastické deformace (plastické deformace v makroobjemu materiálu). Je zde minén vznik plastických deformací v bodě - jedná se tedy o bodový mezní stav. Podle již uvedené klasifikace se řadí k mezní stavům výpočtovým: samotné dosažení hranice mezi pružnou a plastickou oblastí ještě nemusí být přišinou vyřazení konstrukce z provozu. Až překročení této mezí, mající za důsledek nepřípustné deformace nebo poruchy soudržnosti, vede k vyřazení z provozu. Přítom vznikající plastické deformace mohou být:

a) prvotní - jestliže v průběhu zatěžování od výchozího do mezního stavu se jednalo pouze o pružné deformace,

b) následné - k přechodu mezního stavu došlo ze sekundárně pružného stavu (jehož bylo dosaženo po překročení mezního stavu prvotní pružnosti s následujícím odlehčením) v souladu s následnou podmínkou plasticity.

Mezní stav pružnosti je jedním z nejčastěji používaných mezních stavů: je dostatečně konzervativní (poskytuje posouzení na bezpečné straně) pro materiály v tvárném stavu a je poměrně výpočtově nenáročný (je potřebné řešení pouze v pružné oblasti).

3. MS stability

Tento mezní stav, který je typický změnou charakteru stability soustavy, se spojuje s různorodými situacemi:

a) MS vzpřímená stability - dochází při něm k rozvojení rovnováhy (k bifurkaci)

(b) při jeho překročení je možný labilní i stabilní stav, přičemž se velmi snadno dosahuje nepřípustných deformací). Je to výpočtový mezní stav, nevzniká u skutečné soustavy. Častěji je u prutových soustav, desek a skořepin;

b) MS tvarové stability - při jeho dosažení existuje jedna stabilní a více labilních konfigurací soustavy. Při jeho překročení dochází k nové stabilní konfiguraci skokem (doprovázeným "lupnutím"). Tento přesok je tedy hraničním stavením: v okamžiku přesoku může dojít k porušení funkce soustavy, během přesoku může dojít k trvalé deformaci, k lomu apod. Může vést přímo k vyřazení z provozu, je to MS skutečný.

c) MS plastická stability: do jeho dosažení se plastické deformace rozvíjejí rovnoměrně v makroobjemu, po překročení se soustřeďují do lokálních oblastí. Příkladem je stav při vytváření "krčku" na vzorku při maximálním zatížení v průběhu tahové zkoušky;

d) MS stability trhlin - viz dále;

e) MS stability polohy - týká se rizika překlopení, nadzdvíhání z ložisek nebo posunutí konstrukce nebo její části.

4. Mezní stavy souvisící s porušováním tělesa

V průběhu zatěžování součástí nebo konstrukce se u nich může vyskytnout jedna nebo více dále uvedených fází procesu porušování; tyto fáze jsou pak odděleny jednotlivými mezními stavy:
I. fáze: Nukleace trhliny - podrobněji o tom v [1]. V případě apriorních vad typu trhliny pak tato fáze chybí.

A. MS porušení - je charakterizován vznikem prvního zjišťitelného porušení soudržnosti na hranici rozlišitelnosti. Tato hranice rozlišitelnosti je dána použitými technickými prostředky - optickými a jinými (při pozorování pouhým okem je to na hladkém povrchu trhlinu o velikosti cca 1 mm).

II. fáze: klidový stav trhlin - neméní se jejich počet, tvar ani velikost.

B. mezní klidový stav trhliny - při jeho překročení dochází k více či méně rozsáhlému stabilnímu (subkritickému) růstu.

III. fáze: stabilní růst trhliny - tento proces vyžaduje dodání vnější energie do soustavy. Nejčastěji se jedná o růst při cyklickém zatěžování (viz dále kap. 5), méně často o růst při monotónním zatěžování (viz kap. 4.8).

C. MS stability trhliny: při jeho dosažení nastává nestabilní růst trhliny. Tento nestabilní růst může být proběhnout celým průřezem (a způsobit tak vyřazení konstrukce z provozu), nebo může dojít k jeho zastavení (přijde-li kožen trhliny do oblasti materiálu s dostatečnou lomovou houževnatostí - např. při přechodu z lokálně zkřehnuté oblasti svaru do základního materiálu nebo při použití tzv. zastavovačů trhlin).

IV. fáze: nestabilní růst trhliny - růst probíhá bez dodávání energie z vnějšího, tedy pouze na úkor akumulované energie napjatosti v soustavě. Probíhá tedy nekontrolovatelně a to vysokou rychlostí (400 - 1000 m/s).

D. MS trhlin - při jeho dosažení se trhlinu již natolik rozšířila, že konstrukce přestává plnit svoji funkci. Tak např. u potrubí probíhá trhliny přes celou tloušťku stěny, takže uniká dopravovaná látka (přitom ještě nedošlo k roztržení potrubí na více kusů). Tedy porušení funkčně přípustné se mění na porušení nepřípustné při zachování celistvosti tělesa.

E. MS lomu - při jeho dosažení vzniká z jednoho celistvého tělesa více samostatných těles; je to tedy závěrečná - a téměř vždy nežadoucí - fáze procesu porušování.

Podrobnější představu o souboru mezních stavů ve stropnírenství poskytuje přehled na obr. 3. [5]. V rámci předmětu Mezní stavky a spolehlivost se v dalším zaměříme podrobněji pouze na problematiku mechanické únavy, křehkého lomu a creepu a to v názvově především na předměty Materiálové charakteristiky [1] a Pružnost a pevnost [9]. Z dlouhodobého sledování strojních zařízení totiž vyplynul jejich převažující podíl na vzniku provozních poruch.

Při komplexním řešení problematiky MS pevnosti přicházejí potom v úvahu následující úlohy:

1. detekce MS pevnosti (po demontáži nebo bezdemontážní diagnostikou),
2. predikce MS pevnosti (na základě známého stavu zařízení ve sledované době se určí možné mezní stavy v budoucnosti pro předpokládané provozní režimy a pravděpodobnost jejich možného výskytu,
3. optimalizace systému z hlediska MS pevnosti (volba tvaru, materiálu apod.),
4. diagnostika MS ve smyslu zjištění příčin jeho vzniku.
2.4 MECHANICKÁ TEORIE PORUŠENÍ

2.4.1 Hlediska při studiu MS

S ohledem na cíle studia MS (a k tomu též použité prostředky) lze volit různá hlediska:

a) fyzikální,
b) metalurgické,
c) mechanické.

ad a) V tomto případě se studují mechanismy vzniku plastických deformací a porušení materiálu na úrovni jeho mikrostruktury. Těmito otázkami se zabývá fyzika kovů. Přes nesporné úspěchy, kterých tato vědní disciplína dosáhla, je však nutno konstatovat, že v současné době ještě není schopna poskytnout kvantitativní podklady na takové úrovni, aby umožnily kvantifikaci mezních podmínek reálné konstrukce pouze na základě strukturně mechanických parametrů.

ad b) Je cílem určení takových technologických procesů, které u daného materiálu zajišťují požadovanou odolnost proti příslušným mezním stavům.

ad c) Jeho obsahem je formulace fenomenologických podmínek popisujících vznik plastických deformací a porušování na základě vhodné zvoleného výpočtového modelu materiálu a výsledků zkoušek reálného materiálu v reálných podmínkách. Související jevy se popisují jako takové, bez rozboru a znalostí procesů probíhajících ve struktuře.
2.42 Stavové a materiálové charakteristiky

Při posuzování mezních stavů pevností je nezbytným vstupním podkladem informace o napěťově deformačních odchodech v posuzovaném průřezu (při globálním mezním stavu) resp. v bodě tohoto průřezu (při lokálním mezním stavu). Zdůrazňování využití odevzdy (a nikoliv zatížení) plyne z mnohdy nelineárních závislostí mezi těmito dvěma veličinami v důsledku např. dynamických charakteristik konstrukce (kmitání v rezonanční oblasti) nebo nelineárního chování při pružně-plastických deformatích. Souhrnně budeme označovat soubor veličin určujících mezní stav jako stavové veličiny (označíme je S). Obecně se v průběhu používání zařízení mění s časem.

$$S = S(t)$$

Vedle toho je třeba mít též k dispozici soubor materiálových charakteristik (příslušejících k posuzováním mezním stavům) určených na vhodně zvolených zkoušebních vzorcích schválenými a uznanými metodikami. Tento soubor označíme C. Otázka vhodného výběru stavových veličin není jednoznačnou a jednoduchou záležitostí. Je určena druhem uvažovaného mezního stavu a způsobem jeho posuzování – příslušné teorie nebo hypotézy. Použitá hypotéza ovšem musí poskytovat výsledky odpovídající s dostatečnou přesností výsledkům experimentů. Potom lze oprávněně očekávat, že další rozvoj fyzikální teorie porušování přispěje k jejímu hlubššímu zdůvodnění a nikoliv vyvrácení.

Stavové veličiny mohou být velmi rozmazané. Tak např. pro mezní stavy deformace nebo pružnosti to budou extrémní hodnoty napětí nebo deformati, které nejsou v provozu překročeny. Pro jiné mezní stavy to může být třeba součinitele intensity napětí. Připomeňme, že takovýto deterministický přístup znamená většinou případě zjednodušení skutečnosti – vhodnější by bylo hovořit o hodnotách, které nejsou překročeny s jistou definovanou pravděpodobností. Pro kumulativní mezní stavy budou vhodnými stavovými veličinami např. rozkmit napětí, střední hodnota kmitu napětí, rozkmit plastické deformační, rozkmit celkové deformace, rozkmit součinitele intensity napětí atd. Potom při mezní podmínce

a) pro okamžitý mezní stav bude

$$S = S_0 = S(t_L)$$

a to v určitém čase $t = t_L$ (kde t_L je doba života). Připomeňme, že pro okamžitý mezní stav je doba života druhotnou (spíše nepodstatnou resp. nezajímavou) veličinou.

Mezní podmínka pak může být formulována takto:

$$F(S, C) = 0$$

Situação je poměrně jednoduchá u jednoparametrických soustav (tj. u soustav s jedním zatěžujícím působením). Komplikovanější je to u víceparametrických soustav. Zde se s výhodou užívá znázornění stavových veličin v interakčním prostoru (viz dále). Práci rovněž usnadňuje formální převedení stavových veličin víceparametrické soustavy na ekvivalentní (výpočtovou) stavovou veličinu vztahující se k fiktivní jednoparametrické soustavě. Jako příklad je možno v této souvislosti uvést redukované namáhání v podmínce mezního stavu pružnosti (viz PP I, II – 9)).

b) pro kumulativní mezní stav je doba života t_L naopak veličinou stojící v popř-
dí našeho zájmu. Je závislá jednak na časovém průběhu (historii) napětí nebo deformací - a tedy na průběhu odpovídajících stavových veličin, ale též na kumulaci probíhajícího poškození. Z hlediska mezního stavu je zcela druhořadou otázkou okamžitá velikost stavových veličin v čase \(t = t_k \).

I v případě kumulativních mezních stavů je vhodné použít pro zobrazení stavových veličin interakčního prostoru - v tomto případě však jediněm rozměrem bude časová osa (příkladem může být např. únava při víceosém stavu napjatostí). V souvislosti s kumulativními mezními stavy je vhodné zavést pojem zobecněné stavové veličiny. Lze ji uvažovat též jako jistou zobecněnou odevzdu materiálu na zatěžování při ustáleném režimu (např. u cyklického zatěžování to bude režim s konstantním středním napětím a konstantním rozkmitem napětí). Tuto veličinu, vyjadřující nám poškození materiálu konstrukce, můžeme chápat různým způsobem:
- na mikroskopické úrovni ji vyjadřuje mechanika poškozování,
- na makroskopické úrovni (která nás především zajímá) lze poškození definovat rozmanitými způsoby:

- poměrem doby provozu \(t_i \) ke kritické době \(t_{KR} \):
 \[D_i = \frac{t_i}{t_{KR}} \]
- poměrem počtu kmitů napětí nebo deformace \(N_i \) k počtu kritickému (ve většině případů ke vzniku trhliny smluvní velikosti):
 \[D_i = \frac{N_i}{N_{KR}} \]
- poměrem deformace jednoměrně nahromaděné ke kritické deformaci:
 \[D_i = \frac{\varepsilon_i}{\varepsilon_{KR}} \]
- poměrem délky trhliny dosažené v daném čase ke kritické délce:
 \[D_i = \frac{a_i}{a_{KR}} \]

Za složitých provozních podmínek nelze vyloučit současné působení několika poškozovacích mechinámů. Tato skutečnost se potom též musí promítнут i do kumulace dílčích poškození vyvolaných těmito procesy:

\[D = \sum D_i \]

Mezní podmínka pro kumulativní mezní stavy musí dále respektovat historii napěťové-deformační odevzdu, mající velmi často charakter stochastického (náhodného) procesu. S tím souvisí nejen metodika získání stavových veličin (např. pro účely únavového posuzování užitím metody stěží jako metody preferované), ale též způsob kumulace dílčích poškození od jednotlivých stupňů zatížení.

Ve shora zmíněných podmívkách zejména stavy vystupují různé materiálové charakteristiky. Ke klasickým je možné řadit modul pružnosti v tahu, Poissonovo číslo, mez kluzu v tahu (různým způsobem definovanou) a mez pevnosti v tahu. Pro cyklické zatěžování jsou zcela běžnými mez únavy (pro příslušný druh namáhání) případně celá Wöhlerova křivka, komplexní součinitel vrubu (nebo dílčí součinitel), umožňující stanovení meze únavy reálné součást). Tyto údaje jsou postačující např. pro popis přechodu z pružného do plastického stavu nebo pro posuzování vysokokmitové únavy. Neumožňují však posuzování v oblasti nižskokmitové únavy ani popis podmíně pro stabilní růst trhliny (např. při cyklickém zatěžování) nebo pro přechod k náhlemu ne-stabilnímu lomu. Tato činnost vyžaduje další - již nakonvenční - materiálové charakteristiky jako jsou lomová houževnatost, cyklická křivka napětí-deformace, zákon
2.43 Interakční prostor

Stavové veličiny je možno s výhodou zobrazovat u víceparametrických soustav v n-rozměrném tzv. interakčním prostoru. Počátek souřadnicové soustavy odpovídá výchozímu stavu. Mezní podmínka je potom znázorněna mezní křivkou (v případě dvou stavových veličin) nebo mezní plochou. Pro mezní stavy s neomezenou životností (tj. pro okamžité mezní stavy a pro trvalou pevnost z oblasti kumulativních mezních stavů) je čas nepodstatnou veličinou a nemusí být explicitně uváděn.

Příklady interakčních prostorů jsou na obr. 4.

Při deterministickém způsobu je mezní stav popsan jednou mezní podmínkou a v interakčním prostoru znázorněn jedinou plochou. Při stochastickém způsobu je mezní stav popsan souborem náhodných mezních podmínek a v interakčním prostoru zobrazen souborem ploch. Náhodné mezní podmínky mohou být vyjádřeny ve tvaru

$$ F_P (S, C) = 0 $$

kde P vyjadřuje pravděpodobnost výskytu. Ta může též vystupovat v mezní podmínce jako parametr:

$$ F (S, C, P) = 0 $$

2.44 Pracovní stavy a zatěžovací cesty

Celou zatěžovací cestu můžeme rozdělit na několik charakteristických úseků (obr. 5):
- montážní zatěžovací cesta (OA),
- pracovní zatěžovací cesta (AP),
- přetěžovací cesta (PM).

Přetěžování může nastat nejrůznějším způsobem. Podle toho lze rozlišovat (obr. 6):
- obecné přetěžování,
- jednoduché přetěžování (přetěžovací přímká je v prodloužení zatěžovací přímky),
- nejnebezpečnější přetěžování (přímka je normálou k mezí přímců nebo k mezí ploše).

Zvláštním případem zatěžování a přetěžování je prostráz těžování definované

\[
\frac{S_i}{S_j} = \text{konst.}
\]

2.5 VÝPOČTOVÉ MODELY MEZNÍCH STAVŮ

Orobeň předikce mezních stavů deformace a porušení použité v etapě návrhu strojní konstrukce určuje do značné míry její budoucí kvalitu. Pro tuto predikci platí v plném rozsahu to, co platí obecně o vývoji inženýrských přístupů: předpokládá se, že po r. 2000 bude komplexní nasazení počítačů všeobecné a samozřejmé. Ne vždy si uvědomujeme hloubku změn, kterou to se sebou přinese. Především se bude měnit podíl odhadu a modelování v predikci (tab. 1) [11].

<table>
<thead>
<tr>
<th>inženýrský přístup</th>
<th>etapa modelování</th>
<th>predikce MS</th>
<th>prioritu má</th>
</tr>
</thead>
<tbody>
<tr>
<td>klasické prostředky</td>
<td>pravěk</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>středověk</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>klasické prostředky CAE</td>
<td>novověk</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

Tab. 1
stavů a to především z hlediska výpočtového modelování (tedy abstraktního modelování [11]):

a) Pravěk modelování mezních stavů

Výpočtový model je vytvořen z nejvážnějších základních submodelů. Jsou to např. modely - dokonale tuhé těleso, prut, tenká deska, válčová skořepina, homogenní a izotropní lineární materiál, osamělé a nejvážnější liniové a plošné síly, dokonale hladké vazby, lineární problému atp. Opět výpočtový model má pouze takovou složitost, která je matematicky zvládnutelná v uzavřeném tvaru a která je výpočtově realizovatelná elementárními prostředky (výpočtově především na logaritmových pravítk, graficky pravítkem a kružítkem).

Jsou to modely, které je možno souhrnně označit jako elementární výpočtové modely. I když v této době existovaly rozsáhlé, matematicky rozpracované teorie vysokej úrovne, elementárnost výpočtových modelů byla dána elementárností výpočetních prostředků. A to právě byl důvod, proč byla inženýrská předikce založena na odhadu.

V této době by vytvářejí nejnižší úrovni výpočtových modelů mezních stavů:
- úroveň 0 - koncepce dovolených napětí, vycházející ze smluvního napětí a na základě zkušenosti získaného dovoleného napětí,
- úroveň 1 - koncepce nominálních napětí vycházející z elementárních případů pružnosti, klasických podmínek pevnosti, korekčních součinitelů a experimentálně zjišťovaných materiálových charakteristik (mez kruž, mez pevnosti, mez únavy).

Na těchto úrovních se většinou jedná o výpočtovou kontrolu předchozího odhadu.

b) Středovék modelování mezních stavů

V období kolem roku 1950 došlo k celé řadě vážných havarií různých typů konstrukcí - mostů, lodí, letadel. Vedle toho nastával současně výrazný rozvoj v oblasti počítačů. Důsledkem pak byl vznik nových metod a přístupů jako jsou metoda konečných prvků, lomová mechanika, elektronová mikroskopie, fraktografie, elektronicky řízené servohydraulické zkušební stroje, odporová tenzometrie aj. V souvislosti s tím je pak možno hovořit o 3. generaci výpočtových modelů mezních stavů, charakteristických:
- využitím elementárních výpočetních prostředků i počítačů,
- využitím klasických i nově vytvářených výpočtových modelů,
- nízkou úrovni vstupních podkladů (odpovídajících v podstatě předchozí etapě),
- zachování priority předikce odhadem (výpočty mají stále charakter kontroly, modelování slouží stále jako kontrola odhadu - i když kontrola vyšší úrovně).

c) Novověk modelování mezních stavů

Předikce mezních stavů souvisí přímou se spolehlivostí konstrukce se všemi důsledky technického, ekonomického a ekologického dosahu. Musí proto respektovat rozvoj poznání, teorií a výpočtových modelů dílčích mezních stavů. Potom lze v této etapě hovořit o výpočtových modelech vyšších úrovní:
- úroveň 4 - koncepce pružně plastických stavů (papíruje mezní stavy porušení na základě výpočtem určeného pružně plastického stavu) a koncepce růstu trhliny (popisuje proces růstu trhliny),
- úroveň 5 - spolehlivostní koncepce (přístupuje k předikci mezních stavů z pravých podobnostních hlediska).

Charakteristickým rysem této etapy modelování je, že tyto koncepce jsou integrální součástí počítačové podpory - tedy jsou součástí subsystému CAE (computer
- operativnost - výpočtové modely musejí být operativně použitelné v celé etapě tvorby konstrukce,
- interaktivnost - musejí umožňovat interaktivní řízení výpočtového modelování řádcelem,
- kompleksnost - musejí navazovat na systémy geométrického a funkčního modelování a obsahovat všechny možné mezijní stavy,
- systémovost - musejí být prvkem nadřazeného, s definovanými vazbami, vstupy a výstupy atd.
- úrovňová struktura - obsahují modely různé úrovně (to umožňuje problémově podmíněné, úrovňové vyvážené modelování v souladu s úrovňemi počítačů),
- počítačová orientovanost - jsou důsledně orientované na současné existující počítačovou techniku,
- adaptivnost - umožňují rozvíjení v souladu s rozvojem vědy a techniky,
- subjektivní podřízenost - formy vstupů, výstupů, interakce a rozhodovacích operací jsou podřízeny řádcelem,
- datová dostupnost - data potřebná pro modelování jsou součástí komplexních databází,
- efektivnost - zvýšení nákladů na návrh vytvářený s využitím počítačového modelování vede k ekonomickým efektům v důsledku zvýšení kvality a urychlení inovace.

Ve světě existují v současné době počítačové systémy, které mají již charakter CAE a které také přinášejí výrazné efekty. Musíme si uvědomit, že vytváření takových systémů je velice náročné. U nás jsme spíše ve stadiu počítačovo modelování.

3. SPOLEHLIVOST MECHANICKÝCH SOUSTAV A JIŽ CHARAKTERISTIKY

3.1 JEVY, STAVY A ČINNOSTI VÝROBČÍ

Pro hodnocení okamžité schopnosti výroby plnit požadované funkce (tedy podle toho, jak vyhovuje v daném časovém okamžiku stanoveným parametřům) byl zaveden termín technický stav. V daném případě může být výrobek ve stavu:
- bezvadném (bezporuchovém) - jestliže odpovídá všem požadavkům stanoveným technickou dokumentací,
- poruchovém - jestliže není schopen plnit tuto funkci.

např. vypadá závěrka - to může být někdy méně podstatná závada, jindy pak příčinou rozsáhlé havárie.

Obr. 7 Vzájemná vazba mezi stavy výrobků (ČSN 01 0102)

Sledujeme-li okamžitou činnost výrobku, potom může být ve stavu (obr. 7):
- provozu (plně požadovanou funkci),
- prostoje (není v provozu - ať již z jakéhokoliv důvodu).
Může se jednat o prostoje:
- provozní (je v bezvadném stavu, ale není z různých důvodů v provozu),
- technický (výrobek se opravuje),
- organizační (výrobek je v poruchovém stavu, ale není z jakéhokoliv příčin opravován).

Přesné vymezení technického prostoje bývá nesnadné, protože zájmy výrobce a uživatele se v tomto bodě rozhoduje. Rozlišení technického a organizačního prostoje je často nemožné (např. při nedostatku náhradních dílů je výrobek v opravě, ale není opravován a to buď z viny výrobce nebo i uživatele, který neobjevil včas potřebné náhradní díly).

Nezbytnou součástí programu spolehlivosti výrobku je dokonalý systém pro sběr a zpracování informací, který nezbytně též zahrnuje sledování výskytu poruch.

Při řešení základních úkolů v teorii spolehlivosti se uvažují dvě základní, vzájemně se vylučující stavy výrobku a to stav:
- bezporuchového provozu,
- poruchového prostoje,
ktére se v době používání náhodně střídají. Kromě toho se předpokládá, že v době poruchového prostoje se porušený výrobek opraví.

Tato zjednodušená představa výrobku ve formě dvoustavového modelu předpokládá, že porucha je úplná, to znamená, že výrobek ztratil úplné schopnost plnit svoji funkci. V tomto případě je bezporuchový stav synonymem pro provozuchopný stav.

Ve skutečnosti však mohou poruchy být jak úplné, tak i pouze částečné - a to podle toho, zda výrobek ztrácel úplné nebo pouze částečné schopnost plnit požadovanou funkcí. Je-li porucha úplná, pak je následný stav výrobku poruchový a sou-
časně provozu neschopný. Je-li porucha částečná, pak je následný stav výrobku zpravidla provozuschopný se sníženými parametry a s menší efektivitou. Tak dostáváme model výrobku více stavový (mnohostavový). Rovněž konkretizace tohoto třídění podle závažnosti důsledků je určitým kompromisem vzhledem k obtížnostem stanovení přesné hranice mezi jednotlivými pojmy. Proto se pro vyjádření charakteristik spolehlivosti používá souborný pojem porucha. Podrobnější třídění však umožňuje v praxi sledovat provozní charakteristiky výrobků (pohotovost, opravitelnost aj.) s vyhovující přesností a to obvykle na třech úrovních:
- celého zařízení,
- montážního uzlu (skupiny, pod soustavy),
- jednotlivých součástí (prvků).

Je velmi důležité podchytit i informace o zdánlivě málo významných poruchách, které vzhledem ke své četnosti mají často překvapivě velký ekonomický význam.

Je tedy třeba rozlišovat pojmy bezvadný a provozuschopný stav. Provozuschopný stav výrobku na rozdíl od bezvadného stavu vyhovuje pouze těm požadavkům technické dokumentace, které zajišťují jeho normální činnost při plnění předepsaných funkcí. Přitom nemusí vyhovovat požadavkům týkajících se např. vnějšího vzhledu. Provozuschopný výrobek může být vadný - jeho vady však přitom nemusí být významné, tj. natolik podstatné, aby zabránily jeho činnosti (jako je např. již zmíněné porušení okrasných nástrček).

Jiným hlediskem pro třídění poruch jsou podmínky jejich vzniku. Potom lze rozlišovat:
1. poruchy vzniklé při normálních podmínkách (kdy byl respektován návod k obsluze zařízení i všechny zásady jeho údržby). K poruší pak dochází zřejmě z vnitřních příčin a původ poruchy je třeba hledat v konstrukci (např. neuvážení skutečné velikosti zatížení) a technologií (např. v nedodržení předepsané technologie výroby).
2. poruchy vzniklé při nenormálních podmínkách provozu (poruchy zde tedy vznikají z vnějších příčin). Mohou být způsobeny:
 a) nesprávnou činností obsluhujícího personálu (přetěžování stroje, překračování pracovní rychlosti ap.),
 b) nepříznivými vnějšími podmínkami (mezni teploty, zvýšená vlhkost, zvýšená prašnost ap.).
Toto klasiﬁkační hledisko je zvlášť závažné z právních důvodů při uplatňování nároků na záruční opravy, hledání původce poruchy atd.

3.2 POJEM "SPOLEHLIVOST"

Při hodnocení jakosti výrobku nás zajímá jak její technická, tak i ekonomická stránka (obr. 8).
JAKOST VÝROBku

- funkčnost
- výkonnost
- funkční přesnost
- ovladatelnost
- provozní spolehlivost
- hygieničnost
- bezpečnost užití
- estetická působivost
- atd.

- bezporuchovost
- životnost
- udržovateľnosť
- diagnosťkovateľnosť
- opravitelnosť
- skladovateľnosť
- pohotovost
- atd.

Obr. 8

Technická stránka (např. strojírenského výrobku) zahrnuje celou řadu vlastností:
- funkčnost (funkční účelnost) - schopnost plnit funkci pro kterou byl vyroben (za předpokládaných podmínek a okolností),
- výkonnost - ekonomicky účelná velikost, účelný rozsah pracovních možností,
- funkční přesnost - optimální kvalita vykonávané práce,
- ovladatelnost - ergonomická vhodnost, schopnost plnit funkci bez mimořádných nároků na fyzickou a duševní náladu obsluhovatele,
- provozní spolehlivost - vlastnost (schopnost) výrobku plnit po stanovenou dobu používanou funkci při zachování provozních parametrů v mezi technických podmínek. V této vlastnosti je obsažena optimální životnost, nákladová, pracovní a materiálová náročnost údržeb, oprav aj.,
- hygieničnost - vlastnost (schopnost) plnit funkci v souladu se zásadami hygieny užívání,
- bezpečnost užití - vlastnost (schopnost) plnit funkci při maximální ochraně obsluhovatele před úrazem nebo jiným negativním vlivem na zdraví.
- atd. - viz ČSN 01 0102 Název slov spolehlivost v technice.

V závislosti na druhu výrobku a jeho určení mohou být některé z uvedených vlastností považovány za základní, jiné za doplňující. Nesporné se však na jakosti výrobku významně podílí spolehlivost (provozní spolehlivost).

I spolehlivost se (obdobně jako jakost) chápe jako komplexní vlastnost každého výrobku. Mezi nejdůležitější spolehlivostní vlastnosti patří:
- bezporuchovost - vlastnost (schopnost) výrobku plnit bez poruchy předepsané funkce po stanovenou dobou a za stanovených podmínek,
- životnost - vlastnost (schopnost) výrobku plnit požadované funkce do mezího stávajících technických podmínek,
- udržovatelnost - vlastnost výrobku umožňující předcházet poruchám, snižovat jejích celkový počet nebo účelně oddalovat termín jejich vzniku údržbou,
- atd. - viz citovaná ČSN 01 0102.

Ve shora uvedené definici spolehlivosti se však téměř nerespektuje jedno z nejpodstatnějších hledisek a to hledisko mechaniky lomu, jež je zastoupeno různými fyzikálními mechanisty a kinetikou procesu stárnutí (např. časovou stránkou vývoje lomu únavového nebo creepového, opotřebení, chemické účinky na poruchové vlastnosti konstrukcí nebo kombinace těchto procesů). Proto je vhodné upravit předchozí interpretaci a kvantifikaci spolehlivosti pro mechanické konstrukce a strojírenská zařízení v tomto smyslu ([14],[16]): spolehlivost je vyjádřena pravděpodobností, přičemž je možno očekávat, že konstrukce v daných provozních podmínkách nenabude ve zvolené době služby při kinetice procesu postupného poškozování (využitou intenzitu poškozování) svého mezího stavu. Tato definice je ovšem náročnější na řešení a má podstatně hlubší obsah než definice předchozí. Vyžaduje totiž syntézu několika faktorů, které s různím účinkem složení, které předcházejí povrchové konstrukce. Řešení otázek spolehlivosti konstrukcí je potom chápáno jednak v úzké spojitosti s teorií pružnosti, jednak v návaznosti na vědecké poznatky z lomové mechaniky.

Spolehlivost technické soustavy (výrobku, zařízení) nezávisí pouze na jejích vlastnostech, ale též (a to ve velkém rozsahu) na člověku a jeho vlastnostech. I když je technická soustava těžba vysoce automatizovaná, člověk je s ní trvale spojen - počínaje projektovým návrhem a pokračuje následným výzkumem, vývojem, výrobou, užíváním v reálném provozu, po dobou oprav a při likvidaci. Je tedy možné každou soustavu rozložit na tři podsoustavy, kterými jsou (zjednodušené řečeno) člověk, stroj a prostředí.

Každý výrobek se do funkčního procesu zapojuje určitou danou inherentní (apriorní) spolehlivostí. Ta v sobě zahrnuje určitou kvalitu koncepčního a konstrukčního návrhu, úroveň technologického zpracování, tedy vlivy výrobních faktorů včetně technické kontroly a závěrečných zkoušek. Tato inherentní spolehlivost výrobku, který opouští výrobní závod, by měla být v souladu s všeobecnými technickými podmínkami, jakostními předpisy, normami a jinými smluvními podmínkami. Můžeme ji zvyšovat vhodnými zásahy do koncepcie, do výzkumu, vývoje a technologie, do kontroly jakosti výroby atp. Nejvíce je tato spolehlivost ovlivněná v etapě návrhu: statistická zjištění ukazují [15], že konstruktoři ovlivňuje náklady na materiál asi z 80 %, mzdou z 60 % a řeší z 20 %, přičemž na spolehlivosti výrobku se podílí více jako ze 70 %.

Výrobek s takto definovanou inherentní spolehlivostí se zapojuje do provozního procesu. Provozní (aposteriorní) spolehlivost výrobku už musí zahrnovat jednak inherentní spolehlivost, jednak spolehlivost podsoustav "člověk" a "prostředí". V této souvislosti je možno konstatovat:
- člověk může pouze zhoršovat provozní spolehlivost,
- při dané inherentní spolehlivosti je možné zvýšit provozní spolehlivost pouze zlepšením úrovni podsoustavy "lidský činitel",

- 23 -
provozní splahlivost je vždy nižší než odpovídající inherentní splahlivost.

Spolehlivost výrobku souvisí velmi úzce s náklady na její dosažení a zaručení. Je žádoucí, aby se toto hledisko neopomíjelo při komplexním řešení splahlivostí a udržovatelnosti. Již o dosažení vhodného kompromisu mezi úrovní splahlivosti a výšší pořizovacích a provozních nákladů (obr. 9). Teoreticky je možno docílit tématé neomezené splahlivosti – ovšem pouze za cenou značného vzrůstu pořizovacích nákladů (na nichž se především podílejí náklady na výzkum i vývoj i doba potřebná k této činnosti). Se vzrůstem splahlivosti však na druhé straně zákonitě klesají náklady na provoz (klesají udržovací náklady, snižuje se spotřeba náhradních dílů). Průběh celkových nákladů (jako součtu pořizovacích a provozních nákladů) tedy vykazuje určité minimum, charakterizující oblast optimální splahlivosti. Uvedené souvislosti jsou ve skutečnosti velmi složité, k jejich dokonalé kvantifikaci jsou však zřídkakdy k dispozici dostatečné objektivní podklady.

3.3 UKAZATELE SPOLEHLIVOSTI

3.3.1 Pozorované proměnné veličiny

Protože splahlivost výrobku je jeho komplexní vlastnost, nelze ji popsat jedným ukazatelem. Všechny dosud známé a používané ukazatele splahlivosti charakterizují buď jeden dílčí vlastnost (jednoduchý ukazatel) nebo charakterizují více dílčích vlastností (komplexní ukazatel). Spolehlivost výrobku je obecně popisována specifickým souborem těchto jednoduchých a komplexních ukazatelů.

Ukazatel, jehož hodnota je určována výpočtem z konečného počtu údajů získaných sledováním hodnoceného výrobku, se nazývá pozorovaný ukazatel. Pokud je tato hodnota vyjádřena jedním číslem, jedná se o bodový odhad ukazatele. Pokud je tato hodnota vyjádřena v podobě hranicních hodnot určitého rozmezí, mluvíme o intervalovém odhado ukazatele.

S ohledem na zaměření našeho předmětu – problematiku mezních stavů pevnosti – si uvedeme pouze ukazatele bezporuchovosti a životnosti.

Při určování bezporuchovosti se především sleduje:
- doba poruchy – t.j. doba provozu do výskytu první poruchy (pracuje-li výrobek s přestávkami, uvažuje se kumulovaná doba provozu),
- doba mezi poruchami – t.j. doba provozu mezi dvěma po sobě následujícími poruchami.

Při určování životnosti se především sleduje:
- celkový život = součet všech dob provozu výrobku od začátku provozu do jeho konečného vyřazení, podmíněného mezním stavem. Definice celkového života se tedy liší od definice technického života pouze kriteriem jeho ukončení.
- doba používání = kalendářní doba provozu výrobku včetně případných přestávek od začátku provozu do okamžiku vzniku mezního stavu. Začátek provozu i mezní stav jsou definovány v technických podmínkách.

- 24 -
3.32 **Ukazatel bezporučnosti**

Pro kvantitativní posouzení možnosti výskytu poruchy neoprávňených (resp. neobnovovaných) prvků, tj. pro kvantifikaci jejich bezporučnosti se používá charakteristika, zvaná doba do poruchy.

Doba do poruchy je náhodnou proměnnou. Pravděpodobnost, že první porucha nastane v čase \(t \geq t \) lze pak vyjádřit distribuční funkcí

\[
R(t) = \Pr\{ \tau \geq t \}
\]

která vyjadřuje **pravděpodobnost bezporučového provozu**.

Tak např. uvažujme soubor výrobků, mající na začátku užívání rozsah \(N_0 \), přičemž pravděpodobnost porušení je u všech stejná. U výrobků dochází v průběhu provozu postupně k poruchám; v daném okamžiku nechť zůstává v provozu \(N_s \) výrobků, takže k poruše došlo u \(N_r \) výrobků (\(N_0 = N_r + N_s \)). V našem případě tedy bude

\[
R(t) = \frac{N_s}{N_0} = 1 - \frac{N_r}{N_0}
\]

Pravděpodobnost poruchy \(F(t) \) pak je

\[
F(t) = \Pr\{ \tau \leq t \} = 1 - R(t)
\]

neboli

\[
F(t) = \frac{N_r}{N_0}
\]

Pravděpodobnost poruchy má známé vlastnosti distribuční funkce, to znamená, je neklesající funkčí času \(t \) takovou, že

\[
F(0) = 0 \quad \Rightarrow \quad F(\infty) = 1
\]

Pravděpodobnost bezporučového provozu je nerostoucí funkcí času \(t \) takovou, že

\[
R(0) = 1 \quad \Rightarrow \quad R(\infty) = 0
\]

To znamená, že bude-li se zvětšovat doba používání prvků, tj. délka intervalu \((0,t)\), bude se pravděpodobnost poruchy prvků zvětšovat a pravděpodobnost bezporučového provozu se bude zmenšovat (obr. 10).

Potom se tedy definuje hustota pravděpodobnosti poruchy

\[
f(t) = \frac{dF(t)}{dt}
\]

Pro uváděný příklad to bude

\[
\frac{dF(t)}{dt} = \frac{1}{N_0} \cdot \frac{dN_r}{dt} = \frac{dR(t)}{dt} = - \frac{1}{N_0} \cdot \frac{dN_r}{dt}
\]

Pravděpodobnost, že porucha prvku nastane v intervalu používání \([t, t + \Delta t]\) charakterizuje při konstantním \(\Delta t \) hustotu pravděpodobnosti poruchy během používání prvků (obr. 11).

\[
\Pr\{ t < \tau < t + \Delta t \} = f(t) \cdot \Delta t
\]

\(\Delta t \rightarrow \infty \)
Platí tedy
\[
\int_0^t f(x) \, dx = F(t) = 1 - R(t)
\]

Potom lze definovat podmíněnou pravděpodobnost
\[
\Pr\{t < \tau \leq t + \Delta t | \tau > t\} = \lambda(t) \cdot \Delta t \quad \Delta t \to 0
\]
tj. že porucha prvku nastane v intervalu používání \([t, t+\Delta t]\) za podmínky, že do okamžiku \(\tau\) nedošlo k porušení. Charakterizuje při konstantním \(\Delta t\) intenzitu poruchy neporušeného prvku během používání prvku.

Funkce
\[
\lambda(t) = \frac{f(t)}{R(t)} = \frac{f(t)}{1-F(t)}
\]
se nazývá intenzitou poruchy. Vyjadřuje rychlost porušování souboru prvků zařazenou na jeden prvek:
\[
\lambda = \frac{1}{N_s} \cdot \frac{dN_r}{dt} = \frac{N_s}{N_s} \cdot \frac{dR(t)}{dt} = \frac{R}{R} \cdot \frac{dR(t)}{dt}
\]

Intenzita poruch je v obecném případě funkci času. V zásadě může (obr. 12a):
- a) s časem vzrůstat - např. v důsledku únava, opotřebení, stárnutí,
- b) s časem klesat - příkladem

může být postupně objevováni skryté vady, které nebyly zjištěny před uvedením do provozu,

- c) v čase constantní - charakterizuje případy s náhodným výskytem poruch, jako je tomu např. u složitých soustav.

Typický průběh intenzity poruch u výroby v provozu je znázorněn na obr. 12b, kde jsou patrný tři výrazné oblasti:

- I - zde se projevují skryté vady (vady materiálu, montáže). Průběh intenzity poruch zde ovlivňuje především výrobcu, vliv provozovatele je nevýznamný. Zástupní doba by měla odpovídat minimálně času \(t_1\). V některých případech jde výrobek do provozu až v čase \(t_1\) - "zahořování" např. televizních přijímačů,
- II - zde dochází při obvyklém provozu k náhodnému výskytu poruch,
- III - vzhledem ke vzrůstající intenzité poruch je nutno v čase \(t_2\) realizovat určitá opatření - vyměnit výrobek za nový, uskutečnit generální opravu ap.

Integraci shora uvedené rovnice dostaneme
\[
\int \lambda \, dt = - \int \frac{dR}{R} = \exp\left(-\int \lambda \, dt\right)
\]
3.33 Ukazatele životnosti

Nejobvyklejším ukazatelem životnosti je střední život, který se stanoví aritmetickým průměrem \(t = \frac{1}{n} \sum_{i=1}^{n} t_i \)

kde \(t_i \) značí technický život,
\(n \) značí počet sledovaných výrobků.

Gamaprocentní život: \(t_p \) se určuje jako p-kvantil technického života pro předepsanou pravděpodobnost:

\[p = 1 - \frac{\gamma}{100} \]

že technický život sledovaného objektu bude menší než \(t_p \). To znamená, že \(t_p \) vyhovuje rovnici

\[F(t_p) = p = 1 - \frac{\gamma}{100} \]

resp.

\[R(t_p) = \frac{\gamma}{100} \]

Například je-li \(\gamma = 90 \% \), je \(p = 1 - 0,90 = 0,10 \) a příslušný technický život se nazývá "devadesátipercentní život":

\[R(t_p) = 0,9 \quad F(t_p) = 0,1 \]

Pro \(\gamma = 50 \% \) se gamaprocentní život nazývá "mediánový život".

3.4 ŘEŠENÍ INHERENTNÍ SPOLEHLIVOSTI – ZÁKLADNÍ ŠVARKY

3.41 Ovod

Cílem těchto řešení je formulace takového výpočtového postupu konstrukce, který nejen zádůvodí její spolehlivost v etapě návrhu, ale respektuje i řadu dalších hledisek, jako jsou např. úspora materiálu, optimalizace výsledného užití, provozní kontrola aj. Možnost splnění těchto zájmů souvisí velmi úzce s použitými výpočtovými modely mezních stavů (jak byly uvedeny v kap. 2.5). Možnosti klasických výpočtových postupů byly v tomto směru zřetelně omezeny. Ke kvalitativním změnám dochází po rozpracování teorie mezních stavů, teorie rozboru skutečných provozních podmínek a predikci mezních stavů, metody konečných prvků, simulačních a experimentálních metod. V současné době k tomu přispívají ještě další vědní obory, jako např. (13, 16):

- Booleova algebra a matematická analýza strukturálního složení systémů, navazující na spolehlivostní sítě, grafy a stromy událostí,
- počet pravděpodobnosti, matematická statistika a teorie stochastických procesů v nejširším slova smyslu, zvláště pak při modelování, vytváření představ o fyzikálních jevech a k přípravě rozboru mezních stavů a stochastických analýz problémů typu "vstup - výstup",
- lomová mechanika a mikrofyzikální, časové (dynamické) představy o postupné degradaci konstrukčních materiálů, součástí i celých soustav,
- teorie experimentu a přístup k tvorbě logických systémových informačních schém, dovolujících syntézu i analýzu,
- obecné principy optimalizace a extréma při vedlejších podmínkách, teorie rozhodování apod.,
- základy matematické teorie spolehlivosti zvláště se zřetelem na skloubení mikro-fyziky s makrooblastí,
- teorie grafů se speciálními aplikacemi v analýze bezpečnosti systémů.

Tyto vědní disciplíny tvoří teoretický základ moderních přístupů při posuzování spolehlivosti mechanických soustav. Již z jejich výčtu je zřejmé, že předběžná příprava studentů strojní fakulty v této oblasti (ať již v rámci základního nebo specializovaného studia) nedovolí věnovat se v rámci předmětu Spolehlivost a mezni stavy těmto otázkám podrobněji.

3.42 Základní návrhové koncepce

K zajištění požadované spolehlivosti navrhované konstrukce lze využít následujících návrhových koncepcí (nazývaných též konstrukčními filozofemi):
1. koncepce bezpečného života (safe life),
2. koncepce přípustného poškození (damage tolerance).

Vznik těchto koncepcí souvisí s rozvojem letectví - obecně je to však jejich použitelnost mnohem širší. Obě dvě mohou být použity pro návrh jednotlivých součástí. Konstrukce jako celek však není obvykle možno navrhnout výlučně podle koncepce přípustného poškození. Použití té které koncepce se potom těž promítá do velikosti zbytkové životnosti a plánu údržby dané součásti i celé konstrukce.

Ad 1. Při projektování soustavy podle koncepce bezpečného života se požaduje, aby doba bezporuchové činnosti odpovídala zvolené době života. Soustava se tedy musí konstruovat, vyrábět a provozovat s takovými zálohami únosnosti, aby i po předpokládané době provozu (např. na konci ekonomické životnosti) nepřekročilo riziko havárie předem sjednanou hodnotu. Zmíněná pravděpodobnost dosažení mezniho stavu bývá extrémně nízká (méně než 5 %). Po této době musí být součást nebo konstrukce vyřazeny z provozu bez ohledu na jejich skutečnou zbytkovou životnost nebo zbytkovou pevnost. Tato koncepce se využívá především pro návrh nejdůležitějších součástí s havarijskými důsledky poruchy. U těchto součástí se předpokládá, že neobsahují počáteční vady a nerespektují se technologické a provozní odchyly.

Při návrhu cyklicky namáhaných částí se potom v rámci této koncepce používá tzv. konstrukční únavová křivka. Ta je odvozena od mediánové křivky (vyhodnocené ze zkoušek souboru vzorků pro pravděpodobnost porušení 50 %) a to posunem vlevo od ní po zahrnutí řady součinítek. Těmito součinítky jsou respektovány neurčitost a nejistoty v ohadech provozních zatížení, rozptyl hodnot mechanických charakteristik materiálu a sporů, nedokonalost metod posouzení příslušných mezniých stavů, vliv provozních vlivů na degradaci materiálu ap.

U takto navržených konstrukcí tedy nelze předpokládat využití jejich zbytkové životnosti. Případně prodloužení původní odhadnutých dob života je možné pouze snížením hodnot shora zmíněných součinítek nebo posunutím mediánové křivky doprava na základě výsledků únavových zkoušek a skutečného provozu.Z uvedeného je zřejmé, že tato koncepce může vést k předčasnému a tedy neekonomickému vyřazení součástí
(zvláště tehdy, kdy stanovená doba bezpečného života není celistvým násobkem doby do generální opravy).

ad 2. Koncepci přípustného poškození odstraňuje značné ekonomické nedostatky kon- cepce bezpečného života. Podle ní je přípustný provoz součástí se zjištěnou vadu stanoveného druhu a velikosti za předpokladu, že je zajištěna poškozená zbytková pevnost konstrukce bez nadměrných deformací. Konstrukce je tedy projektována a vy-

ráběna tak, že se musí připsat možnost většího rizika (v porovnání s předchozí koncepcí) nepředvídané havárie již v době jejího normálního provozu. Jsou-li důsled-

ky případné havárie značné a nebezpečné, musí být učiněna vhodná preventivní a

ochraná opatření předem, aby bylo možné zajistit buď pokračování funkce nebo aby

bylo možno eliminovat (nebo alespoň omezit) škodlivé následky předčasných náhodných

havárií na únosnou míru. V zásadě je možno realizovat tuto koncepci dvěma přístupy:

a) Při přístupu bezpečnosti i při poruše (fail safe) lze poškozeného cíle dosaž-

nout:

- aktivním zálohováním konstrukce, v níž je k tomuto důelu několik paralelně řa-

zených prvků přenášejících zatížení. Při poruše jednoho prvku se nesmí význam-

nější snížit únosnost daného uzlu i konstrukce jako celku.

- pasivním zálohování konstrukce, kdy sekundární nosné prvky převezmou zatíže-

ní až po poruše primárních nosných prvků.

- užitím zastavovačů trhlin, které brání jejich dalšímu růstu.

Konstrukce musí splňovat určité požadavky na zbytkovou pevnost při poruše cesty

zatížení nebo zastavení trhliny. Spolehlivost je zde zajištěna (i při připuště-

ní částečné poruchy konstrukce) přiměřenou zbytkovou pevností a dobou provozu.

b) Při přístupu pomalého růstu trhliny je zajištěn růst počátečního poškození ustá-

lenou, nízkou rychlostí. Přítom za určenou dobu provozu nedosáhne tato poškoze-

ní kritických hodnot (např. pro vznik křehkého lomu). Spolehlivost provozu je

zajištěna častými prohlídkami s vysokou pravděpodobností zjištění případného

poškození dříve než by byla vyčerpána zbytková životnost a pevnost součástí. Zá-

kladní informací u tohoto přístupu je tedy charakteristika růstu trhlin (nejčas-

tější unavených) - pokud možno ve statistickém pojetí. Ta je potom podkladem pro

určení bezpečných intervalů prohlídek. Přístup pomalého růstu trhlin má význam

zejména u součástí s nízkou životností, u nichž se mohou vyskytnout vady. Pro

provoz musí být ovšem prokázána možnost zjištění poškození ještě dříve než sní-

ží zbytkovou pevnost součástí pod její přípustnou mez. Při praktické aplikaci

těto koncepce je tedy nezastupitelným pomocníkem lomová mechanika.

U obou těchto koncepcí je potom vhodné rozřadit všechny prvky podle zvolených

a přesně definovaných spolehlivostních úrovní do bezpečnostních tříd (nejméně čtyř).

K zajištění spolehlivosti přispívají vedle periodických prohlídek též diagnostické

metody, indikující a monitorující poškození v intervale mezi dvěma prohlídkami.

Při použití uvedeného rozlišení se vychází z uvažování důsledků poruchy na ži-

votnost. Kriteriem pro určení reálné doby života však mohou být i jiná hlediska -

např. konkurenceschopnost výrobku, ekonomické faktory aj.

3.43 Spôsoby interpretace bezpečnosti

a) Deterministická interpretace bezpečnosti

Jak již z jejího názvu vyplývá, vychází se u ní z předpokladu o determinist-
kém charakteru všech vstupních údajů, kdy se apriori vylučovala jakákoli náhodnost jak v procesu zatěžování (resp. v napěťové deformaci odezve na toto zatížení), tak i v procesu porušování. Předpokládalo se u ní, že konstrukce bude možno provozovat ve všech případech po prakticky neomezenou dobu, jestliže bude počáteční bezpečnost v souladu s dlouholetými zkušenostmi výrobce. To tedy znamená, že konstrukce byly navrženy na trvalou pevnost – o jejich vyřazení z provozu měly rozhodnout morální i jiné důvody než mezni stavby pevnosti. Pokud byla skutečnost někdy v rozporu s těmito předpoklady (jako v případě havarii), bylo vysvětlení hledáno v tzv. neočekávaných příčinách, v náhodných shodách různých okolností, ve skrytých vadách materiálu apod. Nebyla tedy původně uvažována např. kumulace únavového poškození nebo stárnutí materiálu, skrytá vady aj.

Pracně získané zkušenosti vedly k určení osvědčených velikostí dovolených namáhání a tak se tento postup dlouho udržoval v konstrukčních kancelářích. Postupně – s narůstajícími požadavky na úroveň posouzení mezních stavů – docházelo k různým úpravám a korekcím. Ty se týkaly např. zahrnutí tvarové pevnosti u cyklicky zatěžovaných těles a mezních stavů při nízkých a vysokých teplotách.

Typickým příkladem deterministické interpretace bezpečnosti u okamžitých mezních stavů je její použití při mezním stavu pružnosti. Vychází se při ní:
- z teoreticky stanoveného nominálního napětí v nebezpečném řezu σ_{nom},
- z dovoleného napětí v nebezpečném řezu (resp. koncentraci napětí vyvolaného případným vrubem) σ'_c,
- z mechanických charakteristik materiálu (v tomto případě jím převážně byla mez kluzu R_e, někdy i mez pevnosti R_m).

Protože se při této interpretaci předpokládá časová stálost působícího zatížení, je též

$$\sigma_{\text{nom}}(t) = \text{konst.}$$

Bezpečná funkce je potom zajištěna při

$$\sigma_{\text{nom}} \leq \sigma'_c$$

Potom bezpečnost může být definována např. hodnotou podílu

$$K \equiv \frac{R_e}{R'_C}$$

Uvedené dovolené napětí představuje vlastně výpočtovou teoretickou únosnost při daném mezním stavu:

$$\sigma'_c \equiv \sigma'_{\text{teor}} \leq \frac{R_e}{K}$$

Součinitel bezpečnosti K je komplexním součinitelem, zahrnujícím možné příčiny ohrozící bezpečnost (v našem případě též eventuální výskyt vrubů).

Při deterministické interpretaci se uvažuje rovněž časová neměnnost příslušných materiálových charakteristik. To tedy znamená, že napětí omezující použitelnost (obecně napětí při porušení σ_{por}) je

$$\sigma_{\text{por}}(t) = \text{konst.} \geq \frac{R_e}{K} \geq \sigma'_{\text{teor}}(t)$$

Stejný postup bylo možno uvést např. pro případ mezních stavů s neomezenou životností (např. pro trvalou únavovou pevnost).

Aplikace na kumulativní mezní stavy – např. na časovanou únavovou pevnost – předpokládá uvažování únavového procesu jako procesu deterministického (což je
však v rozporu s pozorovanou skutečností). Schematické je totiž situace znázorněna na obr. 13 pro jednostupeňové zatěžování. Proces únavového poškozování (tj. změny ve struktuře materiálu do vzniku trhliny a růst únavové trhliny) se promítá do postupného snížování únosnosti z počáteční hodnoty reziduální pevnosti na kritickou hodnotu na konci doby života. Hodnota \(S_{rez}(0) = S_a \) odpovídá např. mezi pevností nebo únosnosti s počáteční trhlinou délky \(a_0 \), napětí \(S_{KR} \), pak souvisí s kritickou délku trhliny \(a_{KR} \) při lomu tělesa.

V obecném čase \(t \) je reziduální životnost \(S_{rez}(t) = S_o - (S_o - S_{KR}) \cdot D(t) \)

kde funkce \(D(t) \) popisuje (v tomto případě deterministický) proces únavového poškozování buď pomocí důležitých poškození za jeden kmit (kdy je pokles reziduální pevnosti lineární) nebo v závislosti na rozvoji únavové trhliny (kdy je pokles nelineární)

\[
D(t) = \begin{cases} \frac{a(t) - a(0)}{a_{KR}} & \text{t/m} \\ \frac{a(t) - a(0)}{a_{KR}} & a(t) = a_{KR} \\ \frac{a(t) - a(0)}{a_{KR}} & a(t) = a_{KR} \end{cases}
\]

Součinitel bezpečnosti vyjádřený jako

\[
\kappa = \frac{S_{rez}(t)}{S_o}
\]

je tedy v tomto případě časově závislý.

Se znalostí okamžitě reziduální pevnosti je potom také možno vyjádřit bezpečnost např. při jednorázovém přetížení.

Častěji se však při kumulativních mezních stavech vyjadřuje bezpečnost pomocí doby života - buď celkové nebo reziduální - vyjádřené v časových jednotkách, početních kmitů apod.

b) Statistická interpretace bezpečnosti

V tomto případě se uvažuje jak
- stochastický (náhodný) charakter zatížení nebo odezvy na toto zatížení, charakterizovaný např. hustotou pravděpodobnosti \(\gamma_a(S_o) \) v čase \(t \), tak i
- stochastický model degradace mechanických vlastností (např. u okamžitých mezních stavů pokles lomové houževnatosti v důsledku stárnutí, u kumulativních mezních stavů pak stochastický charakter poškozování a jeho kumulace).

V ilustrativním případě únavového porušování (obr. 14) musí tento model vy- stihovat:
- náhodné kolísání v lokalizaci, počtu a velikosti submikroskopických vad v télese - s tím souvisí náhodná variabilita pevnosti vyjádřená hustotou pravděpodobnosti \(\gamma_o(S_{rez}) \) pro \(t = 0 \),
- stochastické změny v procesu vývoje a růstu trhlin (včetně spojování "slabých míst"),
- stochastické souvislosti mezi provozními podmínkami a výsledným mechanismem
porušení.

Z uvedených faktorů se spolu výrazně proliňají stochastický charakter provozního namáhání a stochastický charakter procesu únavového poškozování. Proto je možné uvažovat jejich splnutí a sledovat přímo stochastický průběh rozvoje a růstu trhlíny s náhodnými skokovými přírůstky jednotkové velikosti.

Výsledkem použití statistických (pravděpodobnostních) metod výpočtu je hustota pravděpodobnosti \(f(t) \) distribuční funkce životnosti součásti, která charakterizuje souvislost dob provozu (počtu kmitů) se spolehlivostí (pravděpodobností bezporuchového provozu).

c) Kvazistatistická interpretace bezpečnosti

Je mezistupněm mezi shora uvedenými dvěma základními případy. Uvažuje:
- statistické zákonitosti výchozí pevnosti
- deterministický proces degradace mechanických vlastností, tj. na příklad deterministický proces únavového porušování (obr. 15) - jak o něm bylo hovořeno v odstavci a).

Vstupními údaji potom jsou: pravděpodobnostní zákonitost výchozí pevnosti, výchozí stav poškození, fyzikální modely mechanismu poškozování, maximální velikost provozního namáhání, libovolný stav v průběhu rozvoje porušování (růstu trhlíny). Výstupními údaji pak jsou hustota pravděpodobnosti reziduální pevnosti, intenzita poruch konstrukce, distribuční funkce délek života a funkce spolehlivosti.

Závěrem je tedy možno shrnout požadavky na úkoly, které je třeba zvládnout pro úspěšné řešení problematiky spolehlivosti s ohledem na mezí

- analýzu a popis provozního zatížení a odezvy konstrukce na toto zatížení v kritickém místě konstrukce,
- sestavení obecných modelů porušování (s využitím výsledků základního a aplikovaného výzkumu fyzikální podstaty mezních stavů), postihujících důsledky všech
vstupních veličin ovlivňujících provozní poruchovost konstrukce,
- analýzu a statistické vyjádření výchozí pevnosti (včetně interpretace statické pevnosti, vlivu velikosti, teorie nejslabšího článku ap.),
- matematické vyjádření kinetiky procesu růstu trhliny a poklesu reziduální pevnosti s časem, jejich možných obměn a speciálních vlastností a charakteristik těchto procesů ve vazbě na provozní namáhání,
- možnost zahrnout deterministicky i stochastický charakter všech procesů až do dosažení meziního stavu,
- teoretickou přípravu pro řešení spolehlivosti složených konstrukcí při respektování fyzikální podstaty porušování a lomových mechanismů.

3.44 Obecný přístup k řešení provozní spolehlivosti

Z předložených úvah vyplývá, že vyjádření provozní spolehlivosti strojních částí a konstrukcí v sobě zahrnuje celou řadu vzájemně na sebe navazujících procesů. Jestliže se zaměříme na konkrétní sekvenci úkolů s ohledem na jejich různé fáze se vy- skytující jejich mezní stav – mezní stav únavového porušení, pak se zde jedná především o procesy provozního namáhání (což lze v této souvislosti chápat jako vstupní proces) a jím vyvolaný proces rozvoje a růstu trhliny (výstupní proces). Schematicky jsou probíhající souvislosti znázorněny na obr. 16. Celý tento řetězec si pak můžeme rozčlenit na řadu kroků. (Podrobnější výklad překračuje možnosti tohoto skripta - lze jej nalézt např. v [31], [15], [16]).

\[F(t) \rightarrow \sigma_x(t) \]

kde \(F(t) \) je stochastické provozní zatížení, \(\sigma_x(t) \) je napětí v kritickém místě prouvažovaný vstupní proces (zahrnuje i vlastnosti konstrukce).

Je tedy třeba v této souvislosti řešit problémy týkající se registrace a analýzy provozního zatížení a namáhání, stochastického kinetických mechanických soustav, programování zkoušek, simulace provozních režimů konstrukcí a jí.

Jelizích účinkem jsou vyvolány elementární poruchy soudržnosti a poškození (zpravidla únavového charakteru). Ke vzniku těchto poškození dochází většinou ne- spojitě po skočích náhodné velikosti. Na to navazuje proces postupného rostoucího
požadování (rovněž stochastického charakteru). S tím souvisí řešení náročných úloh týkajících se stochastického průběhu snižování únosnosti, vzniku a růstu trhlin, posouzení vlivů urychloujících nebo zpomalujících tyto procesy aj. Důsledek procesu požadování na životnost tělesa je možno vhodně převést na měřitelný proces, mající též vhodnější technickou interpretaci - a tím je postupně snižování únosnosti v závislosti na působícím provozním zatížení. Tento pokles únosnosti lze vyjádřit též ve tvaru

\[S_{\text{rez}}(t) = S_0 \left(1 - D(t) \right) \]

v závislosti na procesu požadovaní \(D(t) \) a na počáteční (výchozí) pevnosti \(S_0 = S_{\text{rez}}(0) \). Pokud se týče procesu požadování, pak:
- při deterministickém namáhání lze poruchový proces \(D(t) \) uvažovat ve tvaru buď deterministického (s lineárním nebo nelineárním zákonem redukce únosnosti) nebo stochastického procesu,
- při stochastickém namáhání je poruchový proces buď stochastický nebo kvazistochastický.

Na stochastický proces snižování únosnosti navazuje inverzní proces "stárnutí" v obecnějším fyzikálním pojetí. Pro jistý zvolený stav únosnosti z něj vyplývá náhodná veličina \(t_m \) vystihující délku doby bezporuchové činnosti využívané soustavy za uvažovaného mezního stavu. Souhrnně lze tyto procesy formálně popsat

\[S_{\text{rez}}(t) = t_m \rightarrow R(t) \]

Poslední článok uvedeného řetězce je soustředěn na určení funkce \(R(t) \) tj. pravděpodobností bezporuchového provozu (spolehlivosti) - tedy záruk, že během provozního intervalu \((0, t)\) nedojde k poruše. Výjde jde o míru spolehlivosti bezporuchové činnosti soustavy při daných podmínkách, daném působení vnějších sil a mechanismu porušování.

Vedle těchto vztahů, charakterizujících fyzikálně technickou problematiku provozních poruch v tělesích, je nutno se zabývat též problematikou obecného řešení spolehlivosti složených mechanických soustav. To lze vyjádřit symbolickým zápisem

\[R_{\text{MK}}(t) = \prod \{ R_{E_1}(t), R_{E_2}(t), ..., R_{E_k}(t) \} \]

kde \(R_{\text{MK}} \) udává výslednou spolehlivost mechanické soustavy o známém složení jako funkce spolehlivosti prvků \(E_1, E_2, ..., E_k \). S tím dále souvisí řada otázek matematické statistiky, moderního experimentálního výzkumu, statistické interpretace mezních stavů pevnosti a především různých teoretických úloh vztahujících se ke spojení stávajících pevnostních výpočtů se statistickým pojetím spolehlivosti.

Při uvažování struktury mechanické soustavy jsou většinou její jednotlivé složky chápány jako samostatné "volné" prvky, které mohou být buď opraveny (v případě poruchy) nebo nahrazeny novými (to ještě před poruchou). V obecnějším přístupu může být mechanická soustava:

a) seriovým složením "volných" prvků, z nichž každý je samostatnou, jednoduchou parciální složkou (jednotlivou strojní částí ve shora uvedeném smyslu). Pro úspěšnou činnost seriového systému je nezbytné úspěšné fungování všech jeho prvků. Takto jsou tvořeny běžné mechanické konstrukce, stroje nebo skupiny strojů a zařízení složené z jednodušších dílů.

b) seriovým složením samostatných uzlů, z nichž každý vytváří sam soubor vlastní seriový nebo paralelní podsystém s jednotlivými prvky. Jako příklad mohou posloužit energetická zařízení. (V paralelních systémech působí při poruše jedno-
ho prvku jeho činnost druhy převkl.

c) Jednoduchou strojně části a izolovanými, vzájemně nezávislými kritickými místy.
Tak je tomu např. u součásti se sery nebo různými koncentrátory.

d) Tělesem s náhodně rozloženými vadami a imperfekcími. Pro spolehlivostní posouzení s je představujeme jako systém elementárních, vzájemně nezávislých jednotkových objemů, zahrnujících náhodně velká slabá místa a vady. V každém tomto místě je obecně jiné namáhání. Výsledek porušení je důsledkem nejen tohoto namáhání, ale též závažnosti vady v příslušném objemu.

3.5 ZÁKLADNÍ TEORETICKÉ SMĚRY ŘEŠENÍ SPOLEHLIVOSTI MECHANICKÝCH SOUSTAV

Vyjde-li z všeobecného postupu uvedeného na obr. 16 můžeme - s ohledem na teoretické přístupy a aplikácí záměry - rozlišovat pět základních směrů řešení spolehlivosti mechanických soustav. V každém z nich je pak možno ještě dále uvažovat různé varianty. Takovým způsobem byly vypracovány návrhy metodologických modelů různého charakteru, lišící se především použitými matematickými prostředky a interpretací a aplikací zaměřením (viz [3], [13], [16], kde jsou také další prodrobnosti). Jedná se o tyto směry:
1. pravděpodobnostní analýza spolehlivosti,
2. fenomenologické teorie spolehlivosti,
3. interferenční teorie spolehlivosti,
4. syntéza lomové mechaniky a spolehlivosti,
5. komplexní teorie spolehlivosti.

Při výběru vhodného modelu rozhodují především
- charakter vstupních informací (modelové, reálné, provozní, laboratorní),
- druh a cíle posouzení (projekt, analýza variant, dimenzování, odhad zbytkové životnosti),
- charakter analyzoaného objektu,
- druh provozu z hlediska namáhání, prostředí, charakteru činnosti soustavy,
- další omezující podmínky kladené na konstrukci (např. omezení hmotnosti, výkonové parametry),
- ekonomická hlediska,
- zvláštní požadavky a kriteria.

3.5.1 Pravděpodobnostní analýza spolehlivosti (PAS)

Uvažujme mechanickou soustavu M, mající určitou strukturu, skládající se z prvků E_1, E_2, \ldots, E_k. Této soustavě je potom možno přiřadit k-rozměrný vektor s náhodnými složkami $X_i(t)$

$X_{vk}(t) = \left\{ X_1(t), X_2(t), \ldots, X_k(t) \right\}$

nabývající v čase $0 \leq t < \infty$ jednu ze dvou možných hodnot $(0, 1)$, tj.

$X_{vk}(t) = \begin{cases} 0 \text{ porucha soustavy} \\ 1 \text{ činnost soustavy} \end{cases}$

Přítom i složky $X_i(t)$ vektoru nabývá jednoho ze dvou možných stavů $(0, 1)$. Platí tedy

$X_i(t) = \begin{cases} 0 \text{ porucha prvku} \\ 1 \text{ činnost prvku} \end{cases}$

Aby bylo možno v dalším kvantifikovat spolehlivost soustavy podle náhodných stavů
jednotlivých prvků, je vhodné zavést obecnou funkci \(\psi_{M_k} \) vektorového argumentu \(X \)
\[
\begin{align*}
\psi_{M_k}(X) &= \begin{cases} 0 & \text{porucha} \\ 1 & \text{soustavy} \end{cases} \\
&= \begin{cases} 0 & \text{činnost} \\ 1 & \text{činnost} \end{cases}
\end{align*}
\]
Budeme o ní předpokládat, že může rovněž nabývat pouze jedné ze dvou možných hodnot (0, 1):
\[
\psi_{M_k}(X) = \begin{cases} 0 & \text{porucha} \\ 1 & \text{soustavy} \end{cases}
\]
Argument \(X \), tj. vektor stavů prvků může mít obecně rozdílné tvary. Přehled všech možných situací dává stavová matice \(V(m, n) \), v níž je počet řádků \(m = 2^k \), počet sloupců \(n = k \) (kde \(k \) je počet prvků).

Celá stavba tohoto modelu potom směřuje k hledání pravděpodobnosti, kdy (resp. pro které případy vektorové funkce) platí
\[
Pr\left\{ \psi_{M_k}(X) \right\} = R_{M_k} = R_{požadované}
\]
K tomu účelu se hledají tzv. úspěšné cesty, tvořené prvky \(\infty \) - tého řádku matice \(V(m, n) \), tak, že pro odpovídající vektor \(X_{\infty} = \{x_1, \ldots, x_k\} \) platí
\[
\psi_{M_k}(X_{\infty}) = 1
\]
O systému bezpečném i při poruše (Fast Safe) je možno hovořit tehdy, vyskytují-li se nejméně dvě úspěšné cesty.

Dále se určují tzv. kritické řezy, charakterizované vektorem \(X_{\delta} = \{x_{\delta_1}, \ldots, x_{\delta_k}\} \) pro něž platí
\[
\psi_{M_k}(X_{\delta}) = 0
\]
K řešení je možno použít různých grafických způsobů:

a) logické grafy (strukturální modely) schematizující strukturu mechanické soustavy - seriovou, paralelní nebo kombinovanou,
b) orientované grafy, vymezující všechy možné úspěšné cesty i kritické řezy. Je jejich sestavení je sice náročné, ale velmi účinné.
c) neorientované grafy - výstižněji označované jako stromy události (stromy poruch). Analýza stromu poruch (Fault-tree analysis - zkratka FTA) doznačila znamená rozšíření a stala se velmi důležitým nástrojem analýzy spolehlivosti složitých soustav. Je to metoda deduktivní povahy, zaměřující se pouze na ty události v systému, které mohou způsobit jeho nezávazné situaci (nezabývá se tedy všemi případy nebo případy podřadnými). Odhaluje kritická místa soustavy, dovoluje plánovat správné změny v projektu soustavy (vedoucí ke zlepšení spolehlivosti).

(Podrobněji např. viz [16].)

Uvedený model PAS se může vyskytovat ve třech variantách:

1. Statický model - ve stavovém vektoru \(X_{M_k} \) nevyhýbá vůbec čas - jedná se teď o analýzu statické povahy, v níž se uvažují pouze náhodné stavy.
2. Stochastický model - ve stavovém vektoru a v jeho složkách je respektován provozní čas služby.

- 36 -
3.52 Fenomenologická teorie spolehlivosti (FETES)

Tento model pro řešení spolehlivosti je nejrozšířenější - je vhodný jak pro elektrické, tak i mechanické soustavy. Je založen na znalostí statistických zákonitostí poruch prvků \(E_i \) soustavy, vyjádřených rozdělením pravděpodobnosti času \(\tau_i \) do poruchy. Pro tyto časy platí pravděpodobnostní výraz

\[
G \left\{ \text{porucha } E_i \text{ v čase } \tau \in (t, t + dt) \right\} = f_{\tau_i}(t) \, dt
\]

kde \(f_{\tau_i}(t) \) je hustota pravděpodobnosti výskytu poruchy i-tého prvku soustavy.

Model vychází z představy o jistých typech těchto funkcí a praxi (experimenty) bližší specifikovanými konkrétními hodnotami jejich parametrů. Nejčastěji se volí exponenciální rozdělení pravděpodobnosti

\[
f_{\tau_i}(\lambda_i, t) = \lambda_i \cdot e^{-\lambda_i t}
\]

Potom pro pravděpodobnost času do poruchy i-tého prvku \(E_i \) platí

\[
G \left\{ \tau_i \leq t \right\} = F_{\tau_i}(t) = 1 - e^{-\lambda_i t}
\]

Toto exponenciální rozdělení však nemá pro mechanické konstrukce příliš velký význam - nelze nalézt takové mechanismy porušení, u nichž by bylo možno připustit konstantní hodnoty \(\lambda_i \).

Pro tyto účely doznal podstatně širšího uplatnění Weibullův model s rozložením hustoty pravděpodobnosti

\[
f_{\tau_i}(t, \lambda_i, \alpha_i) = \frac{k}{\alpha_i} \left(\frac{t - \delta_i}{\lambda_i} \right)^{k-1} \cdot \exp \left[- \left(\frac{t - \delta_i}{\lambda_i} \right)^{k} \right]
\]

Pro jednotlivé prvky je tak možné vyjádřit pravděpodobnost bezporuchového provozu, střední čas do poruchy, střední čas do opravy a další charakteristiky.

Pro známou strukturu soustavy (seriovou, paralelní, s opravitelnými nebo nespravitelnými prvky) lze potom odvodit výrazy pro její provozní spolehlivost \(\hat{f} \).

3.53 Interferenční teorie spolehlivosti (ITES)

Podstatu této teorie si ukážeme na problematice mezního stavu pevnosti. V této souvislosti musíme uvádět, že na konstrukci působí vlivy, které se ji snazí porušit - zatížení, tření, teplotní vlivy, korozní aj. Z hlediska mezních stavů jsou však důležitější stavové veličiny popisující daný mezní stav. Mohou jimi být extrémní hodnoty napětí nebo deformace vyskytující se v průběhu posuzované doby provozu, časová řada lokálních extrémů napětí nebo deformací za tuto dobu, korelační tabulka četností výskytu rozkmitů napětí s uvážením jejich středních hodnot, extrémní hodnoty součinitele intenzity napětí nebo třeba těž poškození - různým způsobem definované (jako poměr počtu aplikovaných kmitů na dané hladině namáhání k počtu kmitů za dobu života nebo jako poměr skutečné délky trhliny ke kritické délce ap.). Souborně musíme tyto veličiny charakterizovat jako odevzu konstrukce a označovat \(Z \). Vzhledem k působení celé řady proměnných vlivů může být tato odevza charakterizována svou hustotou pravděpodobnosti \(f_Z \).

Konstrukce odolává těmto vlivům pokud tato odevza nedosáhne své kritické hodnoty - tu budeme stručně označovat jako únosnost a označovat \(U \). Podle druhu stavové veličiny tím může být mezi pevností, zbytková pevnost, mez Únavy, mez časované únavy, lomová houževnatost, kritické poškození aj. Rovněž únosnost je proměnná.
v důsledku působení celé řady vlivů - vlastností materiálu, použité technologie, kvality výroby ap. Tuto proměnnost charakterizuje hustota pravděpodobnosti únosnosti f_U.

Podmínka dosažení mezniho stavu pevnosti (tj. podmínka vzniku poruchy) může být vyjádřena kterýmkoliv z následujících vztahů:

\[Z \leq U \quad Z - U \geq 0 \quad Z \div U \leq 1 \]

Distribuční funkce odezvy a únosnosti jsou definovány

\[F_z(z) = \int_0^z f_z(x) \, dx \]
\[F_u(u) = \int_0^u f_u(x) \, dx \]

Pro pravděpodobnost podrobení únosnosti U platí

\[P_r\{U < U_p\} = F_u(U_p) = p \]

kde p je zřejmě dostatečně nízké: $p < 10^{-4}$ až 0,05.

Pravděpodobnost podrobení odezvy Z

\[P_r\{Z < Z_q\} = F_z(Z_q) = q \]

se naopak požaduje dostatečně vysoká: $q < 0,95$ až 0,9999.

V této souvislosti by bylo možno definovat různé součinitele bezpečnosti - např.
- klasický součinitel bezpečnosti jako podíl středních hodnot odezvy a únosnosti

\[k_c = \frac{U}{Z} \]

Takto definovaný součinitel bezpečnosti nám však neposkytuje jednoznačnou informaci o skutečné záruce bezpečnosti konstrukce. Pro zdůvodnění tohoto tvrzení si představme dva případy rozdělení hustot pravděpodobnosti odezvy a únosnosti se stejnými středními hodnotami avšak s rozdílnými rozptyly. Je zřejmé, že pravděpodobnosti poruchy budou v obou případech rovněž rozdílné.
- konvenční součinitel bezpečnosti výrazem

\[k_{p,q} = \frac{U_p}{Z_q} \]

pro $0 < p < 1$, $0 < q < 1$.

Ve shodě se skutečností můžeme předpokládat, že veličiny Z a U jsou spojité, nezáporné a náhodné. Pro jejich pravděpodobnostní elementy potom platí

\[f_u(U) \cdot \Delta U = P_r\{U \in (U, U + \Delta U)\} \]
\[f_z(Z) \cdot \Delta Z = P_r\{Z \in (Z, Z + \Delta Z)\} \]

Jejich simultánní vlastnosti (kdy dochází k průniku množin) potom vyjadříme pomocí vývozu změně hustoty pravděpodobnosti

\[f_{z;U}(U, Z) \cdot \Delta U \cdot \Delta Z = P_r\{U \in (U, U + \Delta U), Z + \Delta Z > Z\} \]

- 38 -
a dvourozměrné distribuční funkce

\[F_{u,z}(u, z) = \int \int f_{u,z}(x, y) \, dx \, dy = \Pr \{ U \leq u \cap Z \leq z \} \]

Při stochastické nezávislosti \(Z \) a \(U \) lze dvourozměrnou hustotu pravděpodobnosti vyjádřit marginálními hustotami pravděpodobnosti

\[f_{u,z}(u, z) = f_u(u) \cdot f_z(z) \]

a obdobně

\[F_{u,z}(u, z) = F_u(u) \cdot F_z(z) \]

Spolehlivost konstrukce potom můžeme definovat pravděpodobnostním vztahem

\[\Pr \{ U \geq Z \} = R = 1 - F_u \]

kde \(R \) vyjadřuje spolehlivost a \(F_u \) pravděpodobnost poruchy, která tedy je

\[F_u = \Pr \{ U \leq Z \} \]

Jiné ekvivalentní tvary jsou

\[R = \Pr \{ (U - Z) > 0 \} \]

nebo

\[R = \Pr \{ (\ln \frac{U}{Z}) > 0 \} \]

Vyjádříme si spolehlivost podle modelu \(U \geq Z \).

K tomu účelu si nejprve zavedeme vyjádření následujících pravděpodobností:

\[\Pr \{ U \leq x \} = F_u(x) \]

\[\Pr \{ Z \leq x \} = F_z(x) \]

\[\Pr \{ U > x \} = 1 - F_u(x) \]

\[\Pr \{ Z > x \} = 1 - F_z(x) \]

\[\Pr \{ x \leq U \leq x + dx \} = f_u(x) \, dx \]

\[\Pr \{ x \leq Z \leq x + dx \} = f_z(x) \, dx \]

Aby došlo k poruše, musí být současné splněny dvě podmínky:

1. \(U \leq x \) resp. \(\Pr \{ U \leq x \} = F_u(x) \)
2. \(Z = x \) resp. \(Z \in \langle x, x + dx \rangle \)

\[\Pr \{ Z \in \langle x, x + dx \rangle \} = f_z(x) \, dx \]

Jeden možný případ poruchy z nekonečného počtu případů dostaneme jako součin pravděpodobností

\[\Pr \{ U \leq x \} \cdot \Pr \{ Z \in \langle x, x + dx \rangle \} = F_u(x) \cdot f_z(x) \, dx = \xi_R \]

- 39 -
Integrací přes celý rozsah proměnnosti \(X \) od 0 do \(\infty \) dostaneme pravděpodobnost poruchy

\[
F_1 = \Pr \left\{ U \leq Z \right\} = \int_0^\infty f_U (x) f_Z (x) \, dx
\]

a spolehlivost

\[
R = 1 - F_1 = 1 - \int_0^\infty f_U (x) \, dx
\]

Podobně můžeme pro jeden případ poruchy psát

\[
dF_1 = \Pr \left\{ Z > U \right\} = \Pr \left\{ Z > x \right\} \Pr \left\{ U < x \right\} \, dx
\]

a tedy integrací dostaneme pravděpodobnost poruchy

\[
F_1 = \int_0^\infty \left[1 - F_Z (x) \right] \cdot f_U (x) \, dx
\]

a spolehlivost

\[
R = 1 - F_1 = \int_0^\infty f_Z (x) \, dx
\]

Při známých distribučních funkcích zatížení a únosnosti lze vypočítat příslušné hodnoty \(F_1 \) a \(R \).

Pokud konstrukce obsahuje k potenciálně kritických míst a jsou-li tato kritická místa vzájemně nezávislá, je celková spolehlivost konstrukce

\[
R_{konstr} = \prod_{i=1}^{k} R_i
\]

Poznámky:
1. Pokud se veličiny \(U \) a \(Z \) řídí logaritmicko-normálním rozdělením, je vhodnější použít model \(\ln (U/Z) \).
2. Využijí modelu \((U - Z) \) pro případ cyklického zatížení bude ukázáno později.

3.54 **Sytéza lomové mechaniky a spolehlivosti (SYLMS)**

Tento model je nesporně nejnáročnější ze všech modelů uvažovaných pro využití v souvislosti se mezími stavů pevnosti. Stručně je možno tento směr vysvětlit jako spojení teorie pružnosti s teorií mezních stavů rozšířenou o stochastickou interpretaci mechanizmu procesů poškozování.

V závislosti na povaze vstupních informací a použitím matematického aparátu se může vyskytovat řada variant. V jednakou šíři případě se tento model zaměřuje na syntézu pouze jediného procesu degradace vlastností (např. únavy) s teorií spolehlivosti. U složitějších verzí se uvažuje kombinace více poškozovaných procesů.

Vysvětluji si podstatu tohoto přístupu na příkladu česí spolehlivost tlakové nádoby reaktoru poškozené rostoucí trhlinou při cyklickém zatěžování \([15] \). Předpokládejme, že k selhání této konstrukce dojde v důsledku křehkého lomu v okamžiku, kdy hodnota součinitele intenzity napětí překročí lomovou houževnatost \(K_{lc} \). Pravděpodobnost výskytu tohoto stavu je

\[
\Gamma = \Pr \left\{ K_{n2} \leq K_{l2} \right\} = f \quad 0 \leq f \leq 1
\]

Jak bude ukázáno později, je součinitel intenzity napětí funkci působícího namáhání \(\sigma \), velikosti trhliny \(a \) a mezí kluzu \(R_{cl} \) (při korekcí s ohledem na velikost plastické zóny). Velikost lomové houževnatosti je v tomto případě odhadována z empirického vztahu v závislosti na vrubové houževnatostí \(K_{ou} \) a mezi kluzu.
Všechny proměnné veličiny vystupující v této úloze považujeme za náhodné veličiny, mající svoje vlastní rozdělení, charakterizované hustotami pravděpodobnosti. Ke stanovení hustoty pravděpodobnosti součinitele intenzity napětí \(f(K_i) \) v jistém časovém okamžiku \(t = \tau \) je potom třeba znát
- hustotu pravděpodobnosti velikosti trhliny \(f(G) \) v čase \(t = 0 \),
- hustotu pravděpodobnosti provozního náhodného \(f \{ S \} \),
- hustotu pravděpodobnosti rychlosti růstu trhliny \(f \{ dG/dN \} \),
- hustotu pravděpodobnosti meze kluzu \(f \{ R_e \} \),
- hustotu pravděpodobnosti přechodových stavů reaktoru (spuštění a odstavení reaktoru, spuštění havarijních tyčí z plného výkonu, tlaková zkouška, zásah havarijních tyčí při spuštění a odstavení, porucha funkce oběhového čerpadla, malá lokální trhlna).

Zjednodušené schema postupu při posouzení je uvedeno na obr. 17.
3.55 Komplexní teorie spolehlivosti (KOTES)

Tento metodologický model vytváří program činnosti k zabezpečení a řízení jakosti od začátku projektování konstrukce až do jejího provozního využití. Ve všech s tím souvisejících etapách jsou uplatňovány snahy zabránit poruchám (anebo alespoň omezit následky vzniklých poruch). Zatím ještě není možné předložit jednoznačnou matematickou formulaci tohoto modelu. Uveďme alespoň přehled teoretických oblastí vytvájících tento model:
- některá z výše uvedených teorií spolehlivosti,
- teorie rozkladu soustavy podle úspěšných cest a kritických žízí (resp. podle případně možných dílčích poruch včetně zhotovení stupně jejich závažnosti),
- definování použití konstruktivní filozofie a její návaznost na uvažovaný spolehlivostní model,
- výběr metod a návrh systému řízení jakosti (v průběhu výroby, montáže, zkoušení a provozu),
- soustava inovačních systémů včetně výzkumu, provozu a diagnostiky,
- metodologie optimizačních postupů při prohlídkách a údržbě včetně zveřejnění získaných poznatků a jejich využití pro následné ovlivnění konstrukce.

4. LOMOVÁ MECHANIKA

4.1 ÚVOD

Klasické metody dimenzování konstrukcí jsou založeny na předpokladu materiálu jako homogenního isotropního kontinua. Skutečný materiál a jeho spoje (např. svařování) se však liší od tohoto předpokladu a to více či méně výrazně. V této skutečnosti je možno také spatřovat hlavní příčinu havarií celé řady kovových - především ocelových - konstrukcí. Tak na konci II. světové války to byly hromadné havárie celosvětových konstrukcí lodí typu Liberty. Z 2500 vyrobených lodí se jich 145 rozložilo na dvě části a téměř 700 jich bylo postiženo vážnými závadami. V posledních letech se objevilo velké množství havarií mostů, plynovodů, ropovodů, velkých nádrží - všeobecně tedy značně rozměrných konstrukcí. K těmto lomům docházelo náhle, bez jakékoliv výraznější předchozí plastické deformace, při namáhání lesních spolehlivě pod mez kluzu. Tyto lomy měly charakter křehkých lomů. Čím to bylo vše vyvoláno? Po válce se začaly (v důsledku snah o snížení hmotnosti) používat v širší míře oceli s vysokou mezí pevnosti. Rozvíjející se výpočtové metody umožňovaly přesnější stanovení lokálních napětí a tedy i snížení součinítek bezpečnosti. To znamenalo, že provozní cyklická namáhání mohla být natolik vysoká, že (často ještě v součinnosti s okolním agresivním prostředím) mohla vyvolat vznik trhlin - zvláště pokud zde současně existovaly nějaké koncentrátoře napětí. Těmi byly mimo jiné svarové spoje - těž častý zdroj technologických vad a to dokonce vad typu trhlin. Tyto vysokočepné materiály však měly současně nízkou loMOVU houževnatost, takže jejich odolnost proti křehkému porušení nebyla vždy postačující (zbytková pevnost za přítomnosti trhlin byla nízká). Studium těchto poruch vedlo ke vzniku nové disciplíny - lomové mechaniky, jejíž vývoj pokračuje i v dnešní době.

Představu o popisu lomového procesu reálné součásti pomocí lomové mechaniky poskytuje obr. 18, kde je znázorněna závislost poškození na době provozu. Pojem
Pojem poškození je zde vztahován k dělu ce trhliny (resp. je chápan jako poměr její okamžité velikosti k velikosti kritické). Doba provozu je nejčastěji vyjadřována počtem km/t. V době využívání konstrukce v ní probíhají dva odlišné procesy poškozování. První z nich je soustředěn do místa vznikající trhliny a oblasti jejího kofene důležité pro růst přes nosný průřez. K vytvoření růstuschopné makrotrhliny (pokud zde již taková trhлина není jako důsledek předchozích technologických operací) je třeba jistého počtu cyklických změn zatížení. Samotný růst pak proniká skokovitě (a různou rychlosti) v závislosti na provozním namáhání, přičemž může docházet i k dočasnému zastavení růstu) až do okamžiku dosažení kritické délky. Její velikost lze stanovit z lomovéhouževnatosti, což je pro lomovou mechaniku charakteristika srovnatelna co do významu s pevností v mechanice kontinua. Lomová houževnatost však nemusí být velmi vysokou na úrovni nezávislá - spíše je tomu naopak: její velikost klesá za provozu v důsledku precipitačního stárnutí, degenerací struktury, účinky prostředí, záření ap. Tento druhý proces poškozování nemusí být lokalizován, může zasahovat celý makroobjem materiálu vystaveného stárnutí, probíhá v jeho mikro - struktuře nezávisle na růstu trhliny.

Lomová mechanika vychází ve své teoretické části z představ tělesa jako kontinua s trhlinou. Nezabývá se tedy otázkami vzniku těchto trhlin. V experimentální části zjišťuje odporní materiálu proti růstu trhliny zkouškami na vzorcích s trhlinami za různých podmínek. Přístup lomové mechaniky je tedy fenomenologický. Nejší xem pouze na křehký lom, podobný postup je možno použít i na nestabilní lomy houževnatého charakteru a s jistými modifikacemi i na stabilní růst trhliny např. při cyklickém zatěžování.

Lomová mechanika je schopna poskytnout odpovědi na otázky:
- zbytkové pevnosti,
- přípustné velikosti trhliny pro očekávané provozní zatížení,
- potřebné doby (počtu km/t) pro nárůst trhliny do její kritické velikosti,
- délky periody pravidelných kontrol zjišťujících chování trhliny,
- volby nejvhodnějšího materiálu pro požadované vlastnosti konstrukce.

Lomová mechanika se tak stala významným pomocníkem konstruktorů v zajišťování bezpečnosti jejich konstrukcí. Ukazuje na souvislosti mezi materiálem součásti a její výrobou na jedné straně a provozními podmínkami (například, deformací a rychlostmi jejich změn, teplotou, druhem prostředí ap.) na druhé straně. Snahou je, aby konstruktér využíval těchto znalostí především k předcházení vzniku těchto poruch již v etapě návrhu konstrukce a nikoliv až následně při analýze příchů jejich zviku a odstraňování. Pro navrhování a posuzování konstrukcí, u nichž se případné havárie mohou projevit ve značných materiálních škodách, v ohrožení životního prostředí nebo dokonce ve ztrátách na lidských životech, byly vypracovány různé normy a předpisy, využívající zákonností lomové mechoniky. Některým z nich bude věnována poznámka v kap. 6.
V průběhu svého vývoje se lomová mechanika rozdělila do dvou hlavních oblastí. Jsou to:

1. oblast lineárně elastické lomové mechaniky (LELM), předpokládající platnost Hookova zákona mezi složkami napětí a deformace u kožene trhliny. Za určitých zjednodušujících předpokladů je schopna LELM popsat napěťové deformaci poměry u kožene trhliny i při existenci malé plastické zóny,

2. oblast elastoplastické lomové mechaniky (EPLM), která uvažuje u kožene trhliny existenci velké plastické zóny případně až úplné zplastizování nosného průřezu s trhlinou.

Oblast LELM se povazuje v současné době do jisté míry za uzavřenou. Lomové kriterium zde může být formulováno na podkladě energetickém (klasické Griffithovy práce, hranici síla trhliny (J, J-integraď, hustota deformací energie) nebo na základě napětí a deformací u kožene trhliny (koncepce součinitele intenzity napětí K, rozvězení v kožene trhliny). Nejčastěji používanou je koncepce součinitele intenzity napětí, kde materiálovou veličinou charakterizující odolnost proti iniciaci nestabilního lomu je podmínka rovnováhy deformace je lomová houževnatost při statickém (K_{IC}) nebo dynamickém (K_{ID}) zatížení. Charakteristickou odolnost materiálu proti běžící trhlině je K_{ID}, zastavení šířící se trhliny (např. trhliny iniciované v lokálně zkřehnuté oblasti svaru) při přechodu do základního materiálu je charakterizováno veličinou K_{IA}.

Oblast EPLM je dosud otevřena dalšímu teoretickému a experimentálnímu výzkumu. Přesto je již zde je k dispozici řada výsledků využitelných v technické praxi k formulaci podmínek pro iniciaci nestabilního růstu trhliny (obr. 19). Často se používá koncepce rozvězení trhliny (COD - koncepce s kritickou hodnotou c_{c}), J-integraď (s kritickou hodnotou J_{IC}), ekvivalentní energie (K_{E}) nebo metoda dvou kriterií (K_{r-L}_{r}).

Obr. 19

Za jistých podmínek (např. u materiálu s teplotní z vízí)

lu lomovou houževnatost při teplotách poněkud vyšších než v předchozím případě

dočází k porušení při pomalém (subkritickém) růstu trhliny (PSRT) a to buď
štěpým nebo tvárným lomen. K nejznámějšímu metodám, které respek
tuji tento subkritický růst, patří metoda R-křivek (\(K_R \) resp. \(J_R \)) a metoda T-modulu (plastického modulu nestability). Okamžik vzniku subkritického růstu trhliny je možno vyjádřit kritickou velikostí \(J_{c1} \) nebo \(\sigma_{c1} \).

Jak je z uvedeného zřejmé, bude se postup při posuzování stability či nestability trhliny skládat z následujících kroků:
- z volby vhodného kriteria, charakterizovaného obecně parametrem \(X \),
- z určení velikosti tohoto parametru pro dané konkrétní provozní podmínky,
- z určení kritické velikosti parametru \(X_c \) pro daný materiál a provozní podmínky,
- z porovnání velikostí \(X \) a \(X_c \) a z formulace toho plynoucích závěrů.

Často se diskutuje o možnostech praktického využití lomové mechaniky při řešení otázek odolnosti proti porušení konstrukce křehkým lomem. Proti využití LELM nejsou v tomtéž směru vážnější výhry. Kritický postoj je zaujímán především k metodám EPLM. Mimo jiné se argumentuje [24]:
- je-li oblast kořene trhliny v pružné-plastickém stavu, není možno použít k vyjádření pole napětí a deformací pouze jedený parametr (jako tomu je u LELM se součinitelem intenzity napětí),
- při teplotách, při nichž je lomový proces provázen značným plastickým přetvořením závisí lomová houževnatost na rozměrech a tvaru zkušebního tělesa,
- stanovení lomové houževnatosti svařových spojů je doprovázeno velkým rozptylem,
- nejsou známé přesné způsoby zahrnutí vlivu zbytkových napětí na křehké porušení.

Kumulace těchto neurčitostí pak vede k volbě vyšších hodnot součinitelů bezpečnosti a způsobuje nepřesné určení velikostí kritických vad, zbytkové pevnosti ap.

Tyto problémy by se však neměly zvětšovat. Řadou prací bylo potvrzeno, že v vymezených oblastech, blíže určených např. kvalitou materiálu a konfigurací vyšetřovaného prvku je možno docela dobře posoudit chování trhlin metodami EPLM.

V této souvislosti hrozí spíše větší nebezpečí z nesprávného použití různých koncepce lomové mechaniky bez zjistění na jejich specifické vlastnosti a použití předpoklady.

Současná lomová mechanika tedy vyžaduje k překonání svých omezení další systematické vědecké důsledně zaměřené. Především na následující skutečnosti:
- modely lomové mechaniky nemohou pokrýt nic podstatného o vzniku mikrotqhlin na povrchu součásti nebo o přeměně technologických vad na růstuchopné trhliny,
- u klasické lomové mechaniky není respektován vliv struktury a čistoty materiálu,
- modely dosavadní lomové mechaniky (a jíž koncepce součinitele intenzity napětí nebo \(J \) - integrału) neplatí pro malé trhliny o velikosti 0,1 až 1 mm - jejich růst však může být u řady součásti rozhodující etapou jejich života,
- lomová mechanika navazuje různé typy bariéry v materiálu jako jsou strukturní bariéry, vliv cyklického zpovětření materiálu, bariéry reziduálních tlakových pnu-tí vyvolané námětem provozním zatížením, změny v růstu trhliny při jejím přechodu s oslabené povrchové vrstvy do hluboké součásti aj.,
- není zahrnuta zvláštní povaha povrchové vrstvy materiálu, odlišnosti jejích
vlastností od vlastností zbývajícího objemu materiálu a složité procesy v ní probíhající jako důsledek působení okolního prostředí a interakce s okolím,
- není počítáno s účinkem tření mezi povrchy trhlin.

4.2 KONCEPCE SOUČINITELE INTENSITY NAPĚTI

4.21 Statická iniciace trhlin

4.211 Napětí a deformace u kořene trhlin

Pro zjednodušení uvažujeme pouze rovinnou úlohu pružnosti. Řešení rovinné
napjatosti i rovinné deformace budou formálně stejně vhodným zavedením materiálo-
vých charakteristik do konstitutivních vztahů.

Z diferenciálních rovnic rovnováhy (bez uvažování objemových sil), konstitu-
tivních vztahů a rovnice kompatibility plyne

\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \cdot (\sigma_x + \sigma_y) = \varphi^2 (\sigma_x + \sigma_y) = 0
\]
tedy, že součet napětí \((\sigma_x + \sigma_y)\) je harmonickou funkcí proměnných \(x, y\). Rovnice
rovnováhy lze splnit substitučí zavedením Airyho funkce napětí \(F\)

\[
\sigma_x = \frac{\partial^2 F}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 F}{\partial x^2}, \quad \tau_{xy} = \tau_{yx} = -\frac{\partial^2 F}{\partial x \partial y}
\]
z rovnice kompatibility tedy dostaneme podmínku

\[
\varphi^2 F = 0
\]

která říká, že \(F(x, y)\) je bipotenciální (biharmonická) funkce.

Muschelíšvili dokázal, že jakoukoli biharmonickou funkci \(F(x, y)\) lze vy-
jádřit pomocí dvou holomorfních funkcí komplexní proměnné \(Z = x + iy\) ve tvaru

\[
F = \text{Re} \left\{ \psi(z) + \chi(z) \right\}
\]

kde \(\text{Re}\) znamená reálnou část funkce, \(\psi(z)\) a \(\chi(z)\) pak vhodné analytické funkce.

(Průměr jsou označeny komplexně sdružené veličiny). Po substituci \(Z = \psi'(z)\), \(\psi(z) = \psi'(z)\) = \(\chi''(z)\)
zavedením funkcí \(\phi(z), \psi(z)\) svazůných komplexní napěťové potenciály dostáváme

vhodnější výrazy pro určení složek napětí

\[
\begin{align*}
\sigma_x + \sigma_y &= 2 \left[\phi(z) + \phi(z) \right] = 4 \text{Re} \left\{ \phi(z) \right\} \\
\sigma_x - i \tau_{xy} &= \phi(z) + \phi(z) - \left[\bar{\psi} \phi(z) + \psi(z) \right] \\
\sigma_y - i \tau_{yx} &= \phi(z) + \phi(z) - \left[\bar{\psi} \phi(z) + \psi(z) \right]
\end{align*}
\]

(obdobným spůsobem by bylo možno získat i výrazy pro určení posuvů).

Uvedenou metodu využil Inglis pro určení koncentrace napětí kolem eliptického
otvoru v taženém pásu (obr. 20). Volbou funkcí \(\phi(z), \psi(z)\) ve tvaru splňujícím
okrajové podmínky získal

\[
(\sigma_y)_{\text{max}} = \sigma \left(1 + 2 \frac{a}{b} \right)
\]

- 46 -
Při uvážení poloměru oskulační kružnice
\[q = \frac{r^2}{a} \quad \text{pak je} \]
\[(S_x)_{\text{max}} = 6 \left(1 + 2 \sqrt{\frac{a}{q}} \right) \]
Vzhledem k tomu, že \(a/q \gg 1 \), platí s postačující přesností
\[(S_y)_{\text{max}} = 2 \cdot 6 \sqrt{\frac{a}{q}} \]
Podobný postup použil Neuber při vyšetřování koncentrací napětí vyvolaných různými druhy koncentrátů.

V limitním přechodu pro \(b \rightarrow 0 \) přechází elipsa v přímkovou trhlinu délky \(2a \), přičemž napětí
\[\lim_{b \to 0} S_y = \infty \]
je neohrazené. Analogicky jsou neohrazenými i ostatní složky napětí. Tento výsledek obdržíme pro všechny trhliny – v jejich kořenech (vrcholech) jsou složky elastického napětí neohrazené. Proto nesplňují základní požadavek fenomenologické formulace a nemohou být stavovými veličinami pro vyjadření podmínky stability trhliny.

V reálném materiálu vznikají vždy v okolí kořene trhliny při jejím růstu plastické deformace, takže skutečné složky napětí a přetvoření jsou konečné. Jejich určení však není jednoduché. V době vzniku a počátečního rozvoje lomového mechanismu to nebylo možné. Byla proto hledána jiná veličina, související s polem napjatostí v elastickém materiálu, která by však byla v kořeni trhliny ohrazena a mohla tak sloužit jako základní parametr podmínky stability. Vhodnou cestou k tomuto účelu se ukázalo Westergaardovo řešení: ten dokázal, že v řadě případů lze vypočítat při řešení rovnice úlohy s jedinou holomorfní funkcí komplexní proměnné, která je svázána s Airyho funkcí napětí vztahem
\[F = \text{Re} \left\{ \overline{Z}(z) \right\} + y \text{Im} \left\{ \overline{Z}(z) \right\} \]

kde
\[\overline{Z} = \int \overline{Z} \, dz \quad \overline{Z} = \int \overline{Z} \, dz \]

Z porovnání je zřejmé, že Westergaardovo řešení je zvláštním případem obecněho Muschelščilověho řešení pro
\[\phi(z) = \frac{1}{2} \overline{Z}(z) \quad \psi(z) = -\frac{1}{2} \overline{Z}'(z) \]

Potom pro složky napětí platí
\[S_x = \text{Re} \left\{ Z(z) \right\} - y \text{Im} \left\{ Z'(z) \right\} \]
\[S_y = \text{Re} \left\{ Z(z) \right\} + y \text{Im} \left\{ Z'(z) \right\} \]
\[\tau_{xy} = -y \cdot \text{Re} \left\{ Z'(z) \right\} \]

Těchto vztahů potom využil pro řešení napjatostí a přetvoření u základních typů zatěžování trhliny (obr. 21):

1. typ – normálnové – lomové napětí je kolmé na líc trhliny,
II. typ (smykové) - ve směru lomových ploch a kolmo na čelo trhliny,
III. typ - antirovinné ("natržení") - smyk je rovnoběžný s čelem trhliny v rovině
lomových ploch.

Z hlediska praktického využití
je nejdůležitější případ I.
Vhodná holomorfní funkce, splňující
okrajové podmínky má tvar
\[Z(z) = \frac{\alpha}{\sqrt{1-(\alpha/z)^2}} \]

Po substituci proměnných do polární
souřadnicové soustavy (obr. 22) je
možno odvodit pro složky napětí pro
rovinnou napěťnost

Obr. 22

\[
\begin{align*}
\sigma_x &= \frac{K_r}{2\pi r} \cos \frac{\alpha}{2} \left[1 - \sin \frac{\alpha}{2} \sin \frac{3\alpha}{2} \right] \\
\sigma_y &= \frac{K_r}{2\pi r} \cos \frac{\alpha}{2} \left[1 + \sin \frac{\alpha}{2} \sin \frac{3\alpha}{2} \right] \\
\tau_{xy} &= \frac{K_r}{2\pi r} \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \cos \frac{3\alpha}{2}
\end{align*}
\]

(4.1)

Pro rovinnou deformaci je
\[
\begin{align*}
\sigma_z &= u (\sigma_x + \mu_y) \\
\tau_{xy} &= \tau_{yz} &= 0
\end{align*}
\]
a posuvy
\[
\begin{align*}
u &= \frac{K_r}{E/(2(1+\mu))} \sqrt{\frac{r}{2\pi}} \cos \frac{\alpha}{2} \left[1 - \sin \frac{\alpha}{2} \sin \frac{3\alpha}{2} \right] \\
v &= \frac{K_r}{E/(2(1+\mu))} \sqrt{\frac{r}{2\pi}} \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \cos \frac{3\alpha}{2}
\end{align*}
\]

(4.2)
Shora uvedené výrazy pro napětí a posuvy jsou exaktně platné pro \(r \approx 0 \). Mnoho být tedy použity pouze v oblasti, kde je \(r \ll a \). To však není pro technickou praxi na závadu, protože účinek trhliny na změnu napětostí rychle doznívá se vznášejícím \(r \). Při obecném řešení musí být uvažovány i další složky vyšších řádů, tedy

\[
\sigma_{ij} = \frac{C_1}{r} f_{ij} (\Theta) + \sum_{n=1}^{\infty} \left[C_n r^{(n-1)/2} f_{nij} (\Theta) \right]
\]

Člen s \(r^0 \) zajišťuje, že složky napětí \(\sigma_x \) a \(\sigma_y \) se blíží napětí v dostatečně velké vzdálenosti od trhliny.

Obdobným způsobem bylo možno odvodit následující výrazy platné pro II. typ trhliny:

\[
\sigma_{x} = -\frac{K_\Pi}{\sqrt{2\pi}r} \sin \frac{\theta}{2} \left[2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right]
\]

\[
\sigma_{y} = \frac{K_\Pi}{\sqrt{2\pi}r} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}
\]

\[(4.3) \]

\[
\tau_{xy} = \frac{K_\Pi}{\sqrt{2\pi}r} \cos \frac{\theta}{2} \left[1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]
\]

a konečně i pro III. typ:

\[
\tau_{xz} = -\frac{K_\Pi}{2\pi r} \sin \frac{\theta}{2}
\]

\[(4.4) \]

\[
\tau_{yz} = \frac{K_\Pi}{\sqrt{2\pi}r} \cos \frac{\theta}{2}
\]

V těchto výrazech značí \(K_\Pi \) součinitel intenzity napětí definovaný vztahem

\[
K_\Pi = \frac{\sigma}{\sqrt{2\alpha}}
\]

\[(4.5) \]

Používané jednotky v soustavě SI jsou MPa.m\(^{1/2}\). nebo N.mm\(^{-3/2}\).

Poznámky: Je možno se setkat se součinitelem intenzity napětí definovaným šírem podélným odlisné a sice jako

\[
K_\Pi = \frac{\tau}{\sqrt{\alpha}}
\]

\[(4.6) \]

Podle též dokázává (viz [1], str. 93), že součinitel intenzity napětí souvisí s hnná sílou trhliny.

Za předpokladu přímého šťěení trhliny podle obr. 21 je možno odvodit pro jednotlivé módy

\[
G_I = \frac{K_\Pi^2}{E'}, \quad G_{II} = \frac{K_\Pi^2}{E'}, \quad G_{III} = \frac{1+\nu}{E'} \cdot K_\Pi^2
\]

\[(4.7) \]

přičemž \(E' \) = \(E \quad \) pro rovinou napětost,

\(E' = \frac{E'}{1+\nu} \quad \) pro rovinou deformaci,

\(\nu \quad \) Poissonovo číslo.

V případě kombinovaného namáhání, kdy dostáváme celkovou napětost jako výsledek dvou nebo tří uvedených způsobů zatížení, se potom uvádí pro hnná sílu trhliny
(neboť práce je skalár)

\[G = G_1 + G_2 + G_3 \]

(4.8)

To ale neodpovídá skutečnosti, neboť u II. typu neroste trhlna ve směru původního oseťeho vrubu, ale odklání se od tohoto směru v závislosti na velikosti Poissonova čísla (viz kap. 4.3).

Při určování součinitele intenzity napětí je možno použít principu superpozice, neboť k závisí lineární na napětí v příručně oblasti. Potom

\[K_1 - K_{[1]1} + K_{[2]} + K_{[3]} + \ldots \]

V souvislosti se zde často používanými pojmy "rovinná napjatost" a "rovinná deformace" je zde třeba uctít malou poznámku. V teorii pružnosti nebo plasticity je rovinná deformace definována v celém objemu tělesa vztahy

\[u = u(x, y) \quad v = v(x, y) \quad w = 0 \]

nebo též jinak (což plyně z předchozího)

\[\varepsilon_z = \frac{\partial w}{\partial z} = 0 \quad \gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} = 0 \]

\[\gamma_{yz} = \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} = 0 \]

S využitím Hookova zákona dostaneme též

\[\sigma_z = \mu \left(\varepsilon'_{x} + \varepsilon'_{y} \right) \quad \tau_{xz} = 0 \quad \tau_{yz} = 0 \]

Rovinná napjatost je pak definována jako

\[\sigma'_{z} = 0 \quad \tau_{xz} = 0 \quad \tau_{yz} = 0 \]

V oblasti lomové mechaniky však tyto pojmy mají omezenější význam. Necharakteryzují stav rovinné napjatosti nebo deformace v celém objemu tělesa, ale pouze u kořene trhliny a v přílehlé oblasti. Novější li potom o lomu za rovinné deformace, máme tím na mysli, že napěťové deformační podmínky u kořene trhliny odpovídají stavu rovinné deformace. V důsledku vysokých gradientů napětí a deformace u kořene trhliny, je zde hlavně rozvoji plastické zóny ji obklopujícím objemom materiálu v elastickém stavu (jestliže je tato plastická zóna dostatečně malá v porovnání s délkou čela trhliny v níž dochází k porušování - tedy na příklad s tloušťkou tělesa v případě průchozí trhliny přes celou tloušťku). Tím jsou vytvořeny podmínky pro vznik lomu za rovinné deformace (oušem s úvazům významu tohoto pojm v lineárně elastické lomové mechanice, kdy velikost plastické zóny může být velmi malá v porovnání s velikostí trhliny). Potom dochází např. u těles typu stěna nebo deska (tedy u těles s uvažovaným stavem rovinné napjatostí) ke vzniku trhliny, přičemž v jejím blízkém okolí je určující pro vznik lomu stav rovinné deformace.

4.212 Určení součinitele intenzity napětí

4.2121 Druhy metod

Pro stanovení velikosti součinitele intenzity napětí pro daný tvar, velikost tělesa a jeho zatížení, typ a velikost trhliny a její polohy v tělesu byla vypracována celá řada metod. Ne všechny z nich jsou však použitelné nebo vhodné pro celé široké spektrum možných typů zadání. Všeobecné jsou tedy k dispozici metody:
I. analytické,
II. numerické,
III. experimentální,
IV. inženýrské.

ad I. Analytické metody

Jsou historicky nejstarší, jejich použitelnost je omezena na jednodušší případy, především na rovinné úlohy. Žádoucí vhodných zjednodušujících předpokladů umožňuje redukci některých prostorových úloh na úlohy rovinné. Vzhledem k jejich v současné době omezenému používání uvedeme pouze jejich stručnou charakteristiku.

A) komplexní napěťové potenciály

Sem patří práce navazující na využití Muschelkäuliga komplexních napěťových potenciálů. Řada výsledků byla též získána za pomoci funkce napětí Westergaarda (jak bylo ukažováno v 4.211).

B) konformní zobrazení

Využívá se zde známého poznatku o snadnější řešitelnosti úloh pružnosti na tělesích chraničových kružnic nebo dvojic soustředných kružnic. Pomocí konformního zobrazení se proto transformuje daný tvar trhliny na jednotkovou kružnicí.

C) kolokace okrajových podmínek

Podstata této metody spočívá ve výběru třídy funkcí napětí, které splňují okrajové podmínky na povrchu trhliny a vyhovují okrajovým podmínkám pouze v některých bodech volného povrchu. Na zbývající části volného povrchu mohou být splněny pouze částečně. Tato metoda se užívá i u případů řešených pomocí konformního zobrazení.

D) Metoda Greenovy funkce

Jiné názvy této metody: metoda příčinkových funkcí (influence functions), metoda váhových funkcí (weight functions). Je to jednoduchá, rychlá a dostatečně přesná metoda pro určení součinitelů intenzity napětí. Využívá principu superpozice. Pole napětí v elastickém tělese s trhlinou si můžeme představit složené ze dvou částí: 1. pole napětí v tělese bez trhliny, zatíženém vnějšími silami, 2. pole napětí v tělese bez vnějšího zatížení avšak s trhlinou symetricky zatíženou na svém povrchu napětí (u trhliny nezatížené na svém povrchu je toto napětí stejně velké, ale opačného smyslu než je napětí v místě trhliny u pole prvého případu). Postačujícím předpokladem pro úspěšnost řešení je znalost součinitele intenzity napětí tělesa daného tvaru s trhlinou zatíženou na povrchu jednotkovou silou v obecném bodě.

ad II. Numerické metody

V rámci metod pro určování součinitele intenzity napětí zcela výhradně v současné době převládá metoda konečných prvků (MKP). Pří jejím využití lze rozlišit dva základní přístupy:
- postupy nevyžadující zásahy do programového systému MKP, kdy velikost součinitele intenzity napětí je určena na základě výsledků výpočtů formou postprocessoru. Tyto postupy lze použít v každém případě bez ohledu na strukturu programového systému a obecně pro libovolnou numerickou metodu,
- postupy využívající speciální trhlinové prvky, které a priori modelují singulární
chování napětí v okolí kořene trhliny tak, jak to vyžaduje teoretické řešení. Takto získané výsledky jsou obecně spolehlivější a nekladou tak velké nároky na přípravu vstupních dat.

Při volbě metody pro určení součinitele intenzity napětí se uplatňují především dvě hlediska:
- požadované přesnosti výsledku (a s tím související ceny výpočtu),
- výpočetní možností, které jsou k dispozici (zejména příslušné programové vybavení).

Uveďme opět pouze stručné charakteristiky užívaných metod:

1. přímé metody

Součinitel intenzity napětí se zde určuje z definice a to buď z posuvů (což je výhodnější - jsou přesnější) nebo z napětí v okolí kořene trhliny. Použití přímých metod vyžaduje vysokou přesnost výpočtu těchto posuvů nebo napětí - u standardních prvků z toho vyplývá požadavek na podstatné zjemnění sítě MKP v okolí trhliny. Důsledkem pak m ohou být (v závislosti na použitém generátoru) zvýšené nároky na přípravu vstupních dat a na spotřebu strojového času. Definiční vztah pro součinitel intenzity napětí platí pouze pro \(r \geq 0 \) - zde jsou však získané hodnoty posuvů nebo napětí zatíženy největší chybou. Obvykle se tedy součinitel intenzity napětí stanoví lineárně extrapolací z hodnot v blízkosti kořene trhliny.

Výhodou přímých metod je možnost využití kteréhokoliv systému MKP. Metodu je možno doporučit zejména pro získání orientačních hodnot součinitele intenzity napětí.

2. energetická metoda

Je založena na vztahu mezi hnačí sílou trhliny a součiniteli intenzity napětí - viz (4.7), (4.8):

\[
\begin{align*}
G &= \frac{k+1}{8G_0} \left(K_1^2 + K_\|^2 \right) + \frac{1}{2G_0} \cdot K_\| \quad (4.9) \\
\eta &= \frac{3-\mu}{1+\mu} \quad \text{pro rovinnou napjatost} \\
k &= 3 - 4\mu \quad \text{pro rovinnou deformaci} \\
G_0 &= \text{modul pružnosti ve smyku}
\end{align*}
\]

a) metoda poddañnosti (diferenciální tuhosti)

Při jejím využití se vypočte deformace energie tělesa pro dvě málo od sebe se lišící délek trhliny. Pro hnačí sílu trhliny potom platí

\[
G = \frac{\partial W}{\partial A} \approx W(A + \delta A) - W(A)
\]

kde \(A \) je plocha původního povrchu trhliny, \(\delta A \) přírůstek tohoto povrchu. \(W \) je deformace energie tělesa s trhlinou. Přírůstek délek trhliny se obvykle volí rovny délce jednoho prvku MKP ve směru řízku trhliny. Získané výsledky jsou poměrně přesné i při použití hrubší sítě. Nevýhodou zde je nutnost opakování výpočtu pro novou délu trhliny.

Při kombinovaném zatížení trhliny, kdy se vyskytuje více módů, se takto získá efektivní hodnota \(K \), neboť tímto postupem určujeme veličinu \(G \). Jednotlivé složky součinitele intenzity napětí nemohou být přímo vzájemně odděleny. Tato skutečnost potom komplikuje využívání této metody, jestliže se zabýváme např. otázkou směru
růstu trhliny, kdy je nutná znalost jednotlivých hodnot \(K_1, K_{II}, \) a \(K_{III}. \)

Obecně je možno doporučit tuto metodu pro její jednoduchost a spolehlivost.

b) metoda virtuálních posuvů (virtuálního růstu trhliny)

Je variantou předchozího postupu: v tomto případě se nemění délka trhliny o velikost jednoho prvků, ale posun se uzlův bod odpovídající koření trhliny o velikost \(\Delta G \), kde \(G \) je délka trhliny. Při tomto postupu se může předpokládat, že se mění tuhosti pouze u prvků v blízkosti kořene trhliny. Vezmeme-li toto v úvahu, pak je stanovení změny deformaci energie tělesa s trhlinou

\[
\sigma W = W (A + \sigma A) - W (A)
\]

postačí pouze jediný výpočet. K tomu jsou potřebné některé nikterak složité úpravy v systému MKP.

Tuto metodu je možno doporučit pro řešení složitých úloh s velkým počtem neznámých – zejména tedy pro prostorové úlohy.

V případě kombinovaného zatížení trhliny získáme i zde pouze efektivní hodnotu součinitele intenzity napětí.

c) metoda J-integrálu

Jak bude ukázáno později v kap. 4.51 platí v elastické oblasti \(J = G \). Hodnota J-integrálu nezávisí na integrační cestě. Ta se obvykle volí v dostatečně vzdálenosti od kořene trhliny s cílem snížit numerické chyby. Metoda nevyžaduje příliš velké zjemnění sítě v okolí kořene trhliny. Obvykle se programuje jako postprocesor k systémům MKP. Na rozdíl od předchozího umožňuje separovat hodnoty \(J_1 \) a \(J_{II} \) a tedy i \(K_1 \) a \(K_{II}. \)

3. využití speciálních prvků

a) metoda posunutých středových uzlů na hranici prvků

b) hybridní trhlinové prvky

U komplikovaných těles s vnitřními trhlinami nejsou vhodné výše uvedené metody, neboť konvergují příliš pomalu a obvykle vyžadují jemné dělení v oblasti kořene trhliny. Daleko výhodnější je v tomto případě použít u kořene trhliny speciální prvky, které správně modelují napěťovou singularitu. Tyto trhlinové prvky mohou být rovněž odvozeny metodami založenými na předpokládaném rozložení posuvů, i když není více možno dodržet spojitost s okolními prvkami. Výhodnější je použít v tomto případě hybridní model, který umožňuje uvnitř prvku zavést napěťové proměnné (vhodné funkce napětí vystihující singularitu) a na hranici deformaci proměnné.
Tyto speciální prvky v sobě již předem zahrnují typ singularity odpovídající řešení v blízkosti kóřené trhliny. Oblasti dostatečně vzdálené od kóřené trhliny jsou pak reprezentovány opět konvenčními prvky. Uvedené případy lze rozdělit do dvou skupin:
- vrchol trhliny je umístěn uvnitř speciálního prvku,
- trhliny je obklopena řadou speciálních prvků, které mají společný uzlový bod v kóřeně (vrcholu) trhliny.

Hybridiční přístup umožňuje spoletlivě výpočet součinitelů intenzity napětí pro všechny tři druhy zatěžovací trhliny. Výhodou je, že není vyžadováno podstatnější zjmenění sítě v okolí kóřené trhliny (postačující je velikost odpovídající asi 1/4 délky trhliny). Nevýhodou je poměrně pracná implementace hybridičních trhlinových prvků do systému MKP.

4. Superpoziční metody

V nich je analytické řešení kombinováno s řešením MKP tak, aby byly splněny všechy okrajové podmínky.

ad III. experimentální metody

Jsou vedle numerických metod dalším vhodným nástrojem pro určování součinitelů intenzity napětí u složitějších konstrukcí s trhlinami.

Z celé řady experimentálních metod se k tomuto účelu využívá předeším metod fotothermometrie a to jak roviné, tak i prostorové (metoda "zmrazených" modelů). Je to také první metoda, která řeší tuto úlohu na základě experimentálních údajů. Hlavními jejími výhodami je bodové měření (bezábavnost) a možnost vizuálního sledování napjatosti po celé ploše. To umožňuje zaměřit pozornost na okolí kóřené šířící se trhliny a studovat závislosti mezi přerozdělováním napětí a probíhajícím ději.

Podobné možnosti poskytuje též metoda holografické interferometrie, která ve spojení s fotothermometrií poskytne všechny potřebné údaje pro výpočet součinitelů intenzity napětí a metoda kaustik.

4.2122 Inženýrské metody odhadu součinitelů intenzity napětí u reálných konstrukcí

Pro základní případ - ostrou trhlinu procházející přes celou tloušťku nekonečné stěny v poli jednoosé napjatosti - bylo zavedeno pro součinitel intenzity napětí

\[K_1 = S \sqrt{\frac{2}{\pi}} \]
(4.5)

Názornější představu o kvantitativních souvislostech poskytuje obr. 23.

Obecně pro trhlinu v konkrétní součásti potom platí

\[K_1 = S \sqrt{\frac{2}{\pi}} \cdot Y \]
(4.10)

kde \(Y \) je korekční funkce, závisející na okrajových podmínkách. K jejímu určení (nazývaném \(K \) - kalibrace) je možno užít některé z dříve uvedených metod. Pro technickou praxi, vyžadující mnohé silou méně přesné, avšak rychle dostupné podklady, lze k těmto účelům využít výsledků publikovaných v různých příručkách (např. [22], [22]).

Vliv konečných rozmezů taženého pásu na \(K_1 \) je uveden na obr. 24. Pro průchozí centrální trhlinu lze použít
\[Y = \sqrt{\frac{2b}{\pi a}} \cdot \tan \frac{\pi a}{2b} \]
(Irwin)

- pro \(a/b \leq 0,5 \)

\[Y = \sqrt{\sec \frac{\pi a}{2b}} \]
(Feddersen)

a pro průchozí hranovou trhlinu

\[Y = 1,12 - 0,231 \left(\frac{a}{b} \right)^2 +
+ 10,55 \left(\frac{a}{b} \right)^3 - 21,72 \left(\frac{a}{b} \right)^4 +
+ 30,39 \left(\frac{a}{b} \right)^5 \]
(4.12)

Jako náhradní vada, nahrazující svým účinkem skutečnou trhlinu, se velmi často uvažuje eliptická nebo poloeliptická vada (obr. 25). Pro obecný bod na povrchu poloeliptické vady je

\[K_I = \frac{5\sqrt{2a}}{\Phi_0} \cdot \sin^2 \varphi +
+ \frac{a}{c} \cos^2 \varphi \]
(4.13)

kde \(\Phi_0 \) znamená úplný eliptický integrál II. druhu. Ten je velmi dobře aproximovatelný výrazem
\[
\phi_o = \left[1 + 4.593 \left(\frac{a}{2c} \right)^{1.65} \right]^{1/2} = \left[1 + 1.454 \left(\frac{a}{c} \right)^{1.65} \right]^{1/2}
\]
(4.14)

V případě homogenní napjatosti (nepůsobí-li v místě trhliny ohybová napětí) dosahuje \(K_I \) u povrchové trhliny své maximální hodnoty v bodě \(A \):
\[
(K_I)_{\text{max}} = \frac{1.12 \ 6 \ \sqrt{\frac{a}{c}}}{\phi_o}
\]
(4.15)

Minimální \(K_I \) je v bodě \(B \):
\[
(K_I)_{\text{min}} = \frac{1.12 \ 6 \ \sqrt{\frac{a}{c}}}{\phi_o}
\]
(4.16)

(oproti vnitřní eliptické vadě je zde navíc součinitel 1,12).

Vliv konečných rozměrů tažené tyče (obr. 26) může být potom respektován vztahy:

\[
Y = Y_R \cdot Y_{\text{vp}}
\]

\[
Y_R = 1 + k \left(\frac{a}{b} \right)^n
\]

\[
k = \left[0.08 + 2.6 \left(\frac{a}{2c} \right) + \left(\frac{a}{2c} \right)^2 \right]^{-3}
\]

\[
n = 2 + \frac{1}{1.5 + 200 \left(\frac{a}{2c} \right) + 45 \left(\frac{a}{2c} \right)^{4.8}}
\]

\[
Y_{\text{vp}} = 1 + 0.12 \left(1 - \frac{a}{2c} \right)^2
\]

Obr. 26

V castě jsou těž případy trhlin vycházejících z kořene vrubů (obr. 27). Je-li kořen trhliny ještě v oblasti koncentrace napětí vyvolané vrubem, je třeba uvažovat toto zvýšení napětí. V dostatečné vzdálenosti od kořene vrubu se uvažuje již působení pouze nominálního napětí. Smith a Miller navrhli
\[K = 6 \sqrt[3]{a} \sqrt{1 + 7,69 \sqrt{h/\rho}} \]

- pro \(a \leq 0,13 \sqrt{h/\rho} \)

\[K = 6 \sqrt[3]{a} \]

- pro \(a > 0,13 \sqrt{h/\rho} \)

\[K = 6 \sqrt{2 (h + a)} \]

Uvedené výrazy je možno použít pro libovolné tvary vrubů umístěné na povrchu nebo pod povrchem. Je dosaženo vyhovující přesnosti, pokud délka trhliny nepřesahuje 30% nosné tloušťky. Ještě lepší aproximace je dosahováno vztahem podle Lukáše a Klesnila

\[K = 1,12 \alpha 6 \sqrt[3]{\frac{\pi a}{1 + 4,5 \frac{\rho}{\sigma}}} \]

kde \(\alpha \) je součinitel tvaru daného vrubu.

Je-li výsledné napětí proměnné po hloubce trhliny, musí se rozložit na svou tahovou (membránovou) \(\sigma_m \) a ohybovou \(\sigma_b \) složku. Z celé řady možných metod se k tomuto účelu preferuje metoda linearizace po délce trhliny: linearizované napětí musí být stejné nebo vyšší než skutečné napětí. Tento postup je též použit v předpisu \[26\].

Součinitel intenzity napětí je pak dán superpozičí

\[K = \{ \sigma_m \cdot \sigma_m + \sigma_b \cdot \sigma_b \} \]

Korekční součinitel \(\sigma_m \), \(\sigma_b \) pro povrchové trhliny podle předpisu \[26\] jsou uvedeny na obr. \[28\].

Souhrnně je možno použít pro odhad součinitele intenzity napětí vztah

\[K_L = (K_L)^{1/7} \cdot Y_{KN} \cdot Y_{KR} \cdot Y_i \cdot Y_{KP} \cdot Y_{AS} \cdot Y_{IN} \]

kde je \((K_L)^{1/7} \) součinitel intenzity napětí trhliny dané konfigurace a zatížení v nekonečném tělese,

\(Y_{KN} \) součinitel vyjadřující vliv koncentrace napětí (u trhlin v místě koncentrátoru),

\(Y_{KR} \) součinitel vyjadřující vliv zakřivení povrchu,

\(Y_i \) součinitel vyjadřující vliv konečných rozměrů tělesa \(q \),

\(Y_{KP} \) součinitel vyjadřující vliv volného povrchu,

\(Y_{AS} \) součinitel vyjadřující vliv asymetrické polohy trhliny,

\(Y_{IN} \) součinitel vyjadřující vliv interakce více trhlin.

4.213 Plastifikace u kořene trhliny

Všechna shora uvedená řešení vycházela z předpokladu lineárně elastického stavu materiálu v oblasti kořene trhliny. Ve skutečnosti však zde prakticky vždy dochází k určitému rozvoji plastické deformace ať už jednosměrném nebo cyklickém zatížování.

Uvedme si přílišné řešení pro průchozí trhlinu ve stěně při jednosměrném zatížování za rovinného stavu napjatosti. Předpokládejme dále, že se jedná o ideální pružně-plastický materiál (napěťová-deformační závislost je ve tvaru Prandtlova — diagramu).
Vyjdeme-li z řešení pole napětí u kořene trhliny, pak pro napětí σ_y při $\theta = 0$ platí podle (4.1)

$$\sigma_y = \frac{K_I}{2\pi r} - \frac{\sigma}{\sqrt{2\pi r}}$$

Toto napětí dosahuje meze kluzu R ve vzdálenosti (obr. 29 a)

$$r = r_p^* = \left(\frac{\sigma}{R_e} \right)^2 \frac{\sigma}{2} = \frac{1}{2\pi} \left(\frac{K_I}{R_e} \right)^2 \quad (4.22)$$

Uvedené řešení je však velmi hrubé, neboť nerespektuje přerozdělení napětí vyvolané existenci plastické zóny. Je nutno pořízení, aby rovnováha vnějších a vnitřních sil byla splněna jen pro elastické řešení, ale též pro řešení elasto-plastické.

Musí být tedy přesně rovněž zatižení odpovídající vyřaďované ploše na obr. 29 a.

Podle Irwinovy představy se vlivem zplastizování chová trhline tak, jako by byla delší než je její skutečný rozměr. Je ji efektivní délka je (obr. 29b)

$$a_{ef} = a + \lambda$$

Uvážíme-li tuto efektivní trhlinu, pak vzdálenost λ dostaneme z podmínek

$$\sigma_y = \frac{K_I}{2\pi \lambda} = \frac{\sigma}{\sqrt{2\pi \lambda}}$$

a tedy

$$\lambda = \frac{\sigma^2 (a + \lambda^*)}{2 R_e^2} = r_p^* \quad (4.23)$$

Splnění podmínky rovnováhy je adekvátní rovnosti vyřaďovaných ploch A, B, tedy

$$\sigma R_e = \left[\int_0^1 \sigma R_e \sqrt{\frac{a + \lambda}{2r}} dr \right] - \lambda R_e$$

a z toho

$$\lambda \approx r_p^*$$

Potom (při uvážení (4.22) a (4.23)), dostáváme velikost plastické zóny ve směru růstu trhliny pro případ rovinné napětí

$$r_p = 2 r_p^* \approx \alpha \left(\frac{\sigma}{R_e} \right)^2 = \frac{1}{\alpha} \left(\frac{K_I}{R_e} \right)^2 \quad (4.24)$$
Pro rovinnou deformaci je řešení složitější. Uveďme zde pouze výsledek - a sice, že její velikost je v tomto případě třetinová, tedy
\[r_p = 2 r_p^3 = \frac{1}{3 \sqrt[3]{(\frac{K_i}{R}})^2 \right) \]
(4.25)
Toto je velikost plastické zóny ve směru růstu trhliny. Představu o tvaru plastické zóny lze získat aplikací některé z podmínek plasticity (např. HHM, maximační smykových napětí ap.). Získané výsledky odpovídají kvalitativně obr. 30.

Můžeme potom obecně psát pro poměrnou velikost poloměru plastické zóny
\[\frac{r_p}{\sigma} = \frac{1}{\sqrt{\frac{6}{R}}} \right) \]
(4.26)
kde \(\sigma \) pro rovinnou napjetost,
\(\sigma \) pro rovinnou deformaci.
Tento vzorec je znázorněn na obr. 31.

Velikost efektivního součinitele intenzity napětí pak je obecně pro průchozí trhlinu
\[K_{I e f t} = \sigma \sqrt{\frac{2}{a}} (a + r_p^3) \cdot \gamma \]
\[r_p = \frac{1}{\sqrt{\frac{6}{R}} \left(\frac{K_{I e f t}}{R} \right)^2 \]
(4.27)
\[K_{I e f t} = \sigma \sqrt{\frac{2}{a}} \cdot \gamma \left(\frac{\sigma}{R} \right)^4 \]

Analogický výraz můžeme odvodit pro povrchovou poloceliptickou trhlinu. Vezme-li podle Irwina
\[\gamma = \sqrt{1,2} = 1,10 \quad \sigma = 4 \frac{R}{2} = 5,66 \]

- 59 -
\[K_I = 1.1 5' \sqrt{\frac{a}{Q}} \]
(4.28)

kde \(Q \) je parametr tvaru trhliny

\[Q = \sigma_0^2 - 0.212 \left(\frac{6}{R_q} \right)^2 \]
(4.29)

Aby byl součinitel intenzity napětí relevantní pro popis pole napětí a deformací a tedy i charakteristikou pro popis deformacního chování v kožení trhliny, musí být velikost plastické zóny dostatečně malá ve srovnání s velikostí trhliny a rozměry tělesa. Pro získání představy o přípustné velikosti plastické zóny byla tato otázka testována na různých typických zkušebních vzorkách. Dospělo se k závěru, že nemá-li být odchylka teoretických a experimentálně zjištěných napětí větší jako 7\%, musí být splněna podmínka velikosti poloměru plastické zóny (\[17,45]\])

\[\frac{r^*}{a} = \frac{1}{\alpha} \left(-\frac{6}{R_q} \right)^2 \leq 0.02 \]
(4.30)

Tato poměrná velikost plastické zóny závisí přibližně lineárně na odchylce teoretického a experimentálního řešení.

Při uvážení shora uvedených mezi to tedy znamená, že se v rámci LELEM připouští při rovinné deformaci \(6'/R_q \leq 0.35 \). (Odchylce 20% odpovídá \(r^*/a \approx 0.05 \) tedy \(6'/R_q < 0.55 \)).

Podobným způsobem by bylo možno využít tento zjednodušený model i pro případ cyklického zatěžování. Dostali bychom (viz např. [11], str. 139) výrazy, z nichž vyplývá, že velikost plastické zóny je při mějším zatěžování rovná jedné čtvrtině velikosti statické zóny. Pro souměrně střídavý cyklus jsou tyto zóny stojatě velké. Je však třeba zdůraznit, že použití předpokladů nejsou zcela přesné splněny a že tedy spolehlivost získaných závěrů je omezená.

Pro určení velikosti plastické zóny byly vypracovány i jiné modely, jak bude ukázáno v kap. 4.4.

4.214 Lomová houževnatost \(K_{IC} \)

Hodnota \(K_{IC} \) charakterizuje odolnost materiálu proti statické iniciaci křehkého porušení v elastické oblasti při rovinné deformaci. Podmínky jejího zjišťování jsou u nás předepsány v ČSN 42 0347 (viz též [11], str. 111). Ke zkouškám se používá těles pro trojbočový ohyb nebo excentrický tah. Aby u kožene trhliny byl stav rovinné deformace, musí být tloušťka vzorku

\[B \geq 2.5 \left(\frac{K_{IC}}{R_e} \right)^2 \]
(4.31)

Podobný požadavek se klade na velikost trhliny: plastická zóna má být malá v porovnání s délkou trhliny - viz (4.30)

\[r_p = 2 r^* < 0.04 a \]
(4.32)

Z toho plyne přibližný vztah pro délku nacyklované trhliny (\(50/6^\% = 2.5 \))

\[a \geq 2.5 \left(\frac{K_{IC}}{R_e} \right)^2 \]
(4.33)

(Pro průchozí trhlinu v nekonečně stěně tomu odpovídá poměr \(6'/R_q = 0.35 \)).

Hodnoty \(K_{IC} \) u ocelí vysoké pevnosti jsou v rozmezí (50 až 100) MPa.m\(^{1/2}\). V závislosti na mezi kluzu je pak minimální požadovaná tloušťka vzorku (2 až 20)mm
z praktických důvodů jsou však zřídkakdy užívány vzorky s tloušťkou menší jak 10 mm. Oceli s nízkou mezi kluze mají lovouhou houževnatost K_{IC} (za normální teploty) řádově 150 MPa.m$^{1/2}$ - takové hodnoty houževnatosti ale mohou být pouze odhadovány. Kombinace různých houževnatostí a nízkých mezi kluze vedou k extrémně velkým požadavkům na tloušťku vzorku (třeba až 1 m). Odolnost materiálu je pak charakterizována jinými koncepemi - houževnatostí. Zkoušení při takto velkých tloušťkách by bylo nejen nepraktické, ale také neurčité (je velmi nepravidelná taková tloušťka stěny reálné konstrukce).

Příklad závislosti houževnatosti na teplotě u oceli

 zahlí 11 483.1 je uveden na obr. 32. Částečně křivka, odpovídající podmínkam velikosti tloušťky (resp. tloušťky vzorku B), ohraničuje oblast využitelnosti K_{IC} jako materiálové charakteristiky od oblasti, kde K_0 je sice tež měřítkem odolnosti proti tomu při statické iniciaci avšak pro materiál dané tloušťky.

Závislost houževnatosti na tloušťce vzorku je znázorněna na obr. 33. Pro $B > B_0 = 2,5 \frac{(K_{IC}/Re)^2}{e}$ je dosaženo houževnatosti při rovinné deformaci. Světelné hodnoty dosahuje lovová houževnatost při dosažení rovinné napjatosti. Rovinná napjatost se může plně rozvinout tehdy, jestliže je plastická zóna řádově stejně velká jako tloušťka stěny, tj. při $B = B_0 = (K_{IC}/Re)^{2/3} \%$. V přechodové oblasti dosahuje lovová houževnatost mezilehlých hodnot. Můžeme užit přibližně Irwinovy korekce

$$K_{IC} = \frac{1}{1 + \frac{1}{B^2} \left(\frac{K_{IC}}{R_0} \right)^2}$$ (4.34)

Pro $B < B_0$ je průběh houževnatosti nepravidelný - někdy je horizontální, jindy klesá.

Rovněž důležitou otázkou je oprávněnost použití hodnot K_{IC} pro kratší tloušťky než udává podmínka (4.33). Je jistě odvědněné, aby podmínky vymezené při použití metody byly stejné jako při určování platnosti lovového kritéria (4.33). To znamená, že v některých případech
bude koncepce K_{IC} nepoužitelná - jak o tom svědčí ilustrační příklady v [24], kdy bez hlubší rozvahy použité posouzení přeceňuje odolnost proti lomu (tedy poškozuje optimisticky vyšší hodnoty lomového napětí). U kratších trhlin rychle vzrůstá velikost plastické zóny a tak dochází k výraznému narušení předpokladů, na nichž je založena tato koncepce.

4.22 Dynamická lomová mechanika

V procesu křehkého porušení tělesa s trhlinou je možno rozlišovat tři stadia:

1. iniciaci lomu, tj. okamžik, kdy se čelo trhliny začíná nestabilně šířit,
2. šíření lomu, kdy se lom šíří tělesem určitou rychlostí (závisející na přívodu energie na čelo trhliny a na odporu proti šíření lomu),
3. zastavení lomu - to může nastat za určitých vznikujících podmínek a při jistých vlastnostech materiálu.

Každé stadium se řídí jinými fyzikálně-metalurgickými a mechanickými zákonitostmi. Odolnost materiálu proti porušení na čelo trhliny bude různá pro jednotlivá stadia (to platí především u materiálů citlivých na rychlost deformace). To především znamená, že lomová houževnatost je závislá na rychlosti zatěžování. Dále to znamená nutnost uvažovat dynamické namáhání u čela pohybující se trhliny - šíření napěťových (event. při impulsním zatěžování též různých) vln. Nelze použít její číselně upravený hodnot ze statického češení, neboť je jde jiný tvar plastické zóny, bariéry proti pohybu trhliny mají jinou povahu, vliv tělesa nebo systému tělesa hraje podstatnější roli. Probíhající procesy jsou značně složité a dosud se je nepodařilo zcela zvládnout ([28]-[30]).

4.221 Dynamické zatížení stojící trhliny

Experimentálně bylo zjištěno, že u ocelí nízké a střední pevnosti dochází při dynamickém namáhání k výraznému poklesu lomové houževnatosti (obr. 34), tedy k vyšší náchylnosti k vzniku křehkého lomu. Toto dynamické namáhání je důsledkem časově proměnných zatížení, měnících se s vysokou frekvencí nebo i různě. Omírně tomu vzrůstá i časová změna součinitele intenzity napětí. Je-li např. u tlakové nádoby K cca 10 MPa.m$^{1/2}$.s$^{-1}$, potom u mostů nebo jeřábů je to cca 10^3 MPa.m$^{1/2}$.s$^{-1}$, u leteckých podvozků cca 10^4 MPa.m$^{1/2}$.s$^{-1}$, u železničních a stavebních strojů méně jako 10^5 MPa.m$^{1/2}$.s$^{-1}$, u dílců automobilů nebo vagónů méně jako 10^6 MPa.m$^{1/2}$.s$^{-1}$ a u kovacích lisů 10^7 až 10^8 MPa.m$^{1/2}$.s$^{-1}$. Metodika
laboratorních zkoušek se proto musí volit taková, aby se jejich podmínky co nejméně lišily od skutečných provozních podmínek.

Avšak k lokálnímu dynamickému namáhání může dojít i u staticky zatížené konst- rukce obsahující lokálně zkřehnutou oblast; v ní existující nebo při statickém za- tížení vzniklá mikrotrhlní provádí tento zkřehnutou oblasti a dojde na hranici se základním materiálem. O jejím dalším postupu rozhodnou vlastnosti základního ma- teriálu zjišťují se za dynamických podmínek.

Materiálovou charakteristikou používanou pro posuzování iniciace nestabilního
lomu je v těchto případech K_{ld} - lomová houževnatost při dynamickém zatížení sta-

cionární trhly.

Pro měření K_{ld} se užívají rázová kladiva nebo podstroje vybavené zařízením
pro registraci závislosti síla - pruhob, případně síla - čas během zkoušky. Na ty-

to zkoušky se používají zkušební tělesa relativně malých rozměrů - nejčastěji roz- měrově shodná se zkušebními těžemi pro zkoušky rázem v ohybu 10 x 10 x 55 mm. Zku- šební tělesa jsou opatřena vrubem, v jehož kořen je cyklickým namáháním vytvořena

únavová trhlní. Zkušební tělesa jsou zatěžována dynamickým tříbodovým ohybem, úde-

rem kyvadla nebo závaží podstroje při náravové rychlosti t až 4 m s$^{-1}$. Náravová

rychlost musí být volena tak, aby seřábání síla a změna tělesa projevující se u

záznamu zkušek neuvědomily vzhledové věci. Docílí se při nich hodnot K

cca 5.105 až 5.106 MPa.m$^{1/2}$ s$^{-1}$, při nich je dynamická lomová houževnatost mini-
mální. Takto lze měřit K_{ld} pro běžné konstrukční svařitelné oceli při teplotách

odporučených předpořádaným provozním teplotám.

I při této zkoušce musí být splněny podmínky pro velikost trhliny a tloušťku

vzorku [48]

\[
a \geq 2.5 \left(\frac{K_{ld}}{R_e^2} \right)^2 \quad \text{B} \geq 2.5 \left(\frac{K_{ld}}{R_e^2} \right)^2
\]

(4.35)

de R_e^2 je dynamická mez kluzu. Pro nízkouhlíkové a nízkolegované oceli s mezi

pvnosti menší než 800 MPA lze dynamickou mez kluzu (při rychlosti deformace odpo-

vidající zkouškám na rázovém kladi) určit ze vztahu [41]

\[
R_e^2 = R_e^2 - 40 + 1100 \exp \left[\frac{-0.0113}{2.7-0.0017 R_e} \left(273 + t \right) \right]
\]

(4.36)

Rada konkrétních hodnot naměřených na čs. ocelích a jejich svarových spojích

je soustavně publikována v katalogu vydávaném Výzkumným ústavem zvářečským v Bra-

tislavě.

 Orientačně je možno uvažovat podle Pelliniho, že $K_{ld} = 0.6 K_{IC}$. Rozborem

obsažných zkoušek by měl vždy vyjádřen teplotní posouv mez K_{IC} a K_{ld}

\[
\Delta K_{IC} = 102 - 0,121 R_e \quad (\circ C)
\]

(4.37)

Výraz platí pro oceli s mezi kluzu od 250 do 950 MPA. Tak např. pro $R_e = 500$ MPA

tomu odpovídá teplotní posuv 41,5 °C.

Z porovnání časových změn součinitele intenzity napětí při těchto laborator-

ních zkouškách a např. u mostů je zřejmé, že použití dynamické lomové houževnatos-

ti pro posouzení jejich bezpečnosti by bylo příliš konzervativní (použití static-

ké lomové houževnatosti K_{IC} v tomto případě nepřichází samořežící v úvahu). Uvá-

šime-li, že při zjišťování K_{IC} je časová změna součinitele intenzity napětí men-

ší jako 10 MPA.m$^{1/2}$ s$^{-1}$, pak ze existuje interval 4 řádů rychlosti zatěžování,
pro nějž není u nás normativní předpis. Elektronické zkušební stroje s mechanickým pohonem jsou příliš pomalé. U různých kladiv a podstrojů se mění rychlost zatěžování změnou výšky spouštění beranu. V tomto případě však je kinetická energie zvážit často nedostatečná k porušení vzorku (nehledě na to, že rychlost je měnitelná pouze v omezeném rozsahu). Tyto skutečnosti spolu s pošadkem zjišťování rychlostní závislosti klasických povrchových charakteristik daly podnět k použití elektrohydraulických zkušebních strojů pro tato měření. Konvenční elektrohydraulické zkušební stroje umožňují maximální rychlost zatěžování při níž lze dosáhnout cca $10^4 \text{MPa}\cdot\text{m}^{1/2}\cdot\text{s}^{-1}$. U elektrohydraulických zkušebních strojů s akumulátorem energie jsou možné časové změny součinitele intenzity napětí do cca $5\cdot10^3 \text{MPa}\cdot\text{m}^{1/2}\cdot\text{s}^{-1}$.

Takovým způsobem bylo možno určit homové houževnatosti při rychlém zatěžování při $K = 10$ až $10^4 \text{MPa}\cdot\text{m}^{1/2}\cdot\text{s}^{-1}$.

Pro zhruba střední rychlosti zatěžování (kdy časová změna součinitele intenzity napětí je cca $10^3 \text{MPa}\cdot\text{m}^{1/2}\cdot\text{s}^{-1}$) je odpovídající teplotní posuv vztažený k teplotě při různých zkouškách

$$\Delta t_{59} \sim 0,75 \quad \Delta t_{59} = 75 - 0,09 \quad R_e$$ \hspace{1cm} (4.38)

Pro představu u ocelí se mezí kluze 500 MPa jsou odpovídající teplotní posuvy

$$\Delta t_{59} = 41,5 \quad \Delta t_{59} = 31 \quad \text{°C}.$$ \hspace{1cm} (4.222)

4.222 Růst a zastavení trhlin

U štífů se trhliny je požadována nejen rovnováha mezi energií dodávanou a spotřebovanou v každém okamžiku

$$dA = dW + dW_r + dW_k$$

ale pro udržení trhliny v pohybu musí být splněna i podmínka pro rychlosti změn energií

$$\frac{dA}{dt} = \frac{dW}{dt} + \frac{dW_r}{dt} + \frac{dW_k}{dt}$$

aťé pro přepracování sily A, elastické energie napínavosti W a energie pro ozvětšení trhliny W_r ještě vystupuje kinetická energie soustavy W_k, což je něco oproti případu statického zatěžení. Energie W_r zahrnuje jak povrchovou energii trhlin, tak i (nevratnou) plastickou práci či vůzku disipací. Nazývá se proto souhrnnou energie disipací a prakticky představuje energii nutnou pro způsob nově plošně jednotky lomu.

Podmínka růstu trhliny potom je

$$G_{1} \leq \frac{1}{B} \left(\frac{dA}{do} \cdot \frac{dW}{do} - \frac{dW_k}{do} \right) \geq \frac{1}{B} \cdot \frac{dW_r}{do} = R_{1c}$$ \hspace{1cm} (4.39)

Odpor proti růstu trhliny je funkcí rychlosti tohoto růstu (obr. 35) - při jisté rychlosti dosahuje své minimální hodnoty $R_{1c\text{min}}$. Podmínka zastavení pak má tvar

$$G_{1} \leq R_{1c\text{min}} \quad \text{resp.} \quad K_s = K_{1s} \ll K_{1c\text{min}}$$

Pokles hodnot K_{1d} při malých rychlostech je ovlivňován energeticky méně náročným štěpým lomem, vzrůstem meze kluze a rychlostí deformace v plastické zóně trhliny a konečně změnou součinitele zpevnění materiálu. Následný vzrůst K_{1d}
s rychlostí za minimem $K_{1D\text{min}}$ je způsoben vznikem podílu jamkového lomu a snížení meze kluzu v plastické zóně s poklesem trojososti napětí.

Dostáváme tak další významnou materiálovou charakteristiku - K_{1D} - lomovou houževnatost pro pohybojící se trhlinu (popisuje šíření lomu, je funkcí rychlosti trhliny).

Tato dynamická lomová houževnatost se vyšetřuje na vzorcích různých geometrií, které podléhají předepsánám pro dodržení podmínek rovinné deformace. Minimální tloušťka je zde menší než při statických zkouškách K_{IC} a sice

$$B > 0,3 \left(\frac{K_{IC}}{R_e} \right)^2$$

kde R_e je statická mez kluzu. Z porovnání s výrazem (4.31) plyne, že platnost hodnot K_{1D} je možno určit na $8 \times$ těch jez vzorku než K_{IC}. Podmínky rovinné deformace je ve skutečné konstrukci při šíření se trhliny dosaženo $8 \times$ těch jez stěnách než při stojící trhlině.

Významnou skutečností vyplývající z experimentu je to, že $(K_{1D})_{\text{min}}$ určené zkouškou na instrumentovaném kladíku je rovná lomové houževnatosti při zastavení běžící trhliny K_{1A}. Tato charakteristika popisuje zastavení šířícího se lomu. Experimentálně se určuje [50] na modifikovaných CT vzorcích (na vzorcích CCA - compact crack arrest) v jehož vrubu jsou vloženy poloviny děleného čepu, které jsou oddařovány vtláčením klínu. Po dosažení konkrétní hodnoty otevíření vrubu startuje z něho nestabilní trhliny, která je po jistém přípravu delší zastavena vlivem odporu materiálu proti šíření nestabilní trhliny. Proces iniciace, šíření a zastavení je v komplexu nutnou podmínkou pro analýzu výsledků zkoušky. Experimentální zkušenosti ukazují, že dynamická analýza procesu může být s dobrou aproximací nahrazena statickou analýzou určení hodnoty K_{1D} v okamžiku zastavení trhliny. Hodnota lomové houževnatosti při zastavení trhliny určená statickým, a tedy méně komplexním přístupem, je oznácována K_{1A}. Rozdíl mezi K_{1A} a K_{1D} určuje velikost dynamických a kinetických vlivů. Tyto efekty však podle dosavadních zkušeností ne-ovlivňují rozdíl mezi K_{1A} a K_{1D} do té míry, aby s dobrou aproximací nemohla být použita obecně jen hodnota K_{1A}. Pro trhliny šířící se v podmínkách rovinné deformace, kdy dynamické vlivy jsou malé, je tato metoda vhodná pro vyšetření, zda a ve kterém místě může materiál zastavit běžící trhlinu. Dynamická analýza by se měla použít při studiu zastavení u konstrukcí zvláště tvarů, s proměnnou rychlostí trhliny a délky jejího skoku.

Z uvedeného je patrná velká důležitost dynamické lomové houževnatosti. U konstrukčních svařitelných ocelí je často známo K_{1D} potřebnější než K_{IC}. Shora uvedená rovnost K_{1A} a K_{1D} je platná pro relativně krátké trhliny - ne-platí již pro dlouhé trhliny, kdy nelze při energetické bilanci zanedbat kinetickou energii soustavy.

Uvedených zákonitostí a charakteristiky je pak možno využít - pro hodnocení stávajících a vytváření nových materiálů majících vysokou schopnost brzdit rychlý pohyb trhlin a majících přirozené bariéry zastavující nebo zpomenující růst trhlin (např. složené materiály),
- při uvědomělém vytváření umělých bariér proti rychlému pohybu trhlin (následná tlaková pnutí, lokální zpevňení materiálu nebo jiná vhodná technologická úprava povrchu, žebra, zastavováče trhlin s vyšší lomovou houževnatostí aj.) ([301], [49]).

4.23 Vliv prostředí na vznik křehkého lomu

Z předchozího vyplývá, že K_{IC} představuje lomovou houževnatost materiálu, určující kritické podmínky pro statickou iniciaci nestabilního lomu. Avšak v řadě případů dochází k těmto nestabilním lomům i když počáteční součinitel intenzity napětí je značně menší než K_{IC}. Příčinou těchto jevů je subkritický růst trhliny, kdy spolupůsobení stáleho napětí s okolním prostředím vede ke koroznímu praskání (koroze za napětí), vodíkovému zkřehnutí ap. Experimentálně bylo prokázáno, že jestliže je počáteční součinitel intenzity napětí K_I větší než jistá prahová hodnota (obr. 36), dojde k subkritickému růstu a tedy - při stále zatížení - těž ke vzrůstu K_I. K porušení lomem došlo vždy po určité době, kdy se K_I nepatrně lišilo od K_{IC}. Lomová houževnatost materiálu se tedy nesnížila vlivem prostředí. Příslušná prahová hodnota součinitelu intenzity napětí se označuje K_{ISCC} (stress corrosion cracking) (prahová lomová houževnatost při korozním praskání pod napětím) jedná-li se o korozní praskání nebo K_{ISH} (jde-li o vodíkové zkřehnutí)[35].

Otázka korozních změn ve svařovaných ocelových konstrukcích je velmi důležitá. U těchto konstrukcí je obtížné a prakticky nemožné se vyhnout povrchovým vadám (zápalům nebo neprůvarům) nebo vzniku mikrotrhlin v tepelně ovlivněné oblasti svaru. Kombinace korozních změn za spolupůsobení zbytečných napětí potom vyvolává oprávněný předpoklad zvýšeného nebezpečí křehkého porušení v důsledku subkritického růstu.

Výsledky zkoušek [36], které sledovaly vliv korozního napěťového ovlivnění na charakteristiky lomové houževnatosti je možno hodnotit ze dvou hledisek. Samotné přímé porovnání křehkolomových charakteristik ukazuje malý vliv korozního působení. Zdůvodňuje se to otupením kořene únavové trhliny korozí vedoucí k dosažení relativně vyšších hodnot lomové houževnatosti. Tento pznatek odpovídá skutečnému chování zkušebního tělesa nebo reálné konstrukce s trhlinami (nebo mikrotrhlinami) únavového typu vystavenými působením korozí. Z metodického hlediska je však správnější přepočítávat lomové houževnatosti na stejné otupení kořene trhliny - takto získáme názornější představu o vlivu korozí. Vyhodnocení zkoušek v tomto smyslu potom je možno interpretovat tak, že konstrukce s tvarovým nebo technologickým vrubem, představujícím podstatně tupejší vadu než je únavová trhлина, by se vlivem korozí pod napětím chovala po určité době jako těleso s velmi ostrou trhlinou.

Vedle uvedených geometrických změn je třeba brát v úvahu i zkřehnutí v oblasti kořene korozních trhlin. Za hlavní zdroj zkřehnutí se dnes považuje nadifundovaný vodík.
4.24 Odhady lomovéhouževnatosti

Zkoušky lomovéhouževnatosti při statickém i dynamickém zatížení jsou v po-
rovnání s jinými mechanickými zkouškami (tahovou zkouškou, zkouškou vrubové hou-
ževnatosti) pracnější, časově náročnější i nákladnější. Proto byly hledány sou-
vislosti mezi výsledky těchto dvou typů zkoušek. V dalším budou uvedeny některé
z nich. Takto zjištěné lomovéhouževnatosti se vztahují na široké teplotní rozmezí,
v němž na sebe plynule navazuje oblasti platnosti LELM a EPLM, vyjádřené hodnotami
K_{IC}, K_{O}, K_{CJ} při statickém zatížení a K_{ld}, K_{ad}, K_{CJd} při dynamickém zatížová-
ní. Tyto hodnoty budou jednotně označeny jako K_{IC} při statickém zatížení a
K_{ld} při dynamickém zatížování. Použité jednotky jsou:

\[
K_{IC} \quad \text{MPa.m}^{1/2}, \quad KCV \quad \text{J.cm}^{-2}, \quad K_{I} \quad \text{J}.
\]

Při přepočtech vrubovéhouževnatosti KCV na lomovouhouževnatost se předpo-
kládá určitá strmlost těchto křivek (ta je vyjádřena příslušným exponentem). U růz-
ých druhů ocelí a jejich svarových spojů je ale tato strmost různá. Zkušenosti tak
potvrzují, že není možno zodpovědně kontrolovat lomovouhouževnatost zkouškou vru-
bovéhouževnatosti pouze při jedné teplotě. Z tohoto hlediska je třeba též hodno-
tit spolehlivost dále uvedených vztahů.

1. Lomováhouževnatost při statickém zatížování

Pro oblast transzních teplot navrhují

- Barsom a Rolfe ([38],[51]) (pro $E = 210 \, 000 \, MPa$)
 \[
 K_{IC} = 5.77 \, (KCV)^{3/4} = 6.83 \, (KV)^{3/4}
 \]
 (4.40)

- Barsom ([37]) později pro oceli na stavbu mostů (pro $E = 210 \, 000 \, MPa$)
 \[
 K_{IC} = 10.42 \, (KCV)^{1/2} = 11.65 \, (KV)^{1/2}
 \]
 (4.41)

- Sailors a Corten ([38],[51]) (s uvážením $E = 210 \, 000 \, MPa$)
 \[
 K_{IC} = 13.18 \, (KCV)^{1/2} = 14.73 \, (KV)^{1/2}
 \]
 (4.42)

Tyto uvedené výrazy jsou všeobecně použitelné pro KCV určené při statickém
ohybu vzorku a nikoliv při zkoušce na různém kladivu. Jejich porovnání je uve-
deno na obr. 37.

- Man a Holzmann ([38]) na základě vrubové houževnatosti při statickém
 ohybu KCV
 - pro střední hodnoty
 \[
 K_{IC} = 7.6 \, (KCV)^{3/4}
 \]
 (4.43)
 - pro minimální hodnoty
 \[
 K_{IC} = 5.4 \, (KCV)^{3/4}
 \]
 (4.44)

Obr. 37
- Rolfe a Barsom [37] navrhují
 - pro známé KCV při různých teplotách stanovit K_{Id},
 - K_{IC} určit z K_{Id} posunutím o teplotní diferenci podle již dříve uvedeného vztahu (4.37)
- britský předpis PD 6493 [27] používá pro posouzení vady nižší z hodnot na obr. 38 a,b:
 - v závislosti na rozdílu provozní teploty konstrukce a přechodové teploty pro kriterium KCV = 50 J.cm$^{-2}$,
 - v závislosti na KCV při provozní teplotě.

Obr. 38

Uvedený průběh K_{IC} na teplotě odpovídá spodní obalové křivce hodnot získaných pro ocel ASTM A 533 B včetně údajů ze zkoušek zastavení trhliny a zkoušek při dynamické iniciaci porušení. Ukázalo se, že hodnoty pro jiné oceli a svarové kovy leží nad touto spodní obalovou křivkou.

2. Lomová houževnatost při dynamickém zatěžování

a) korrelace s vrubovou houževnatostí
- Rolfe a Barsom [37]

 \[K_{Id} = 10,42 \left(\frac{KCV}{Kv} \right)^{1/2} = 11,55 \left(\frac{Kv}{KCV} \right)^{1/2} \]

 (4.45)
- Sailors a Corten [38]

 \[K_{IC} = 14,2 \left(\frac{KCV}{15,4} \right)^{0,375} = 15,4 \left(\frac{KCV}{Kv} \right)^{0,375} \]

 (4.46)

Souhrnně jsou tyto závislosti znázorněny na obr. 39.
- Man a Holzmann [38] pro minimální hodnoty (při KCV v rozmezí od 8 do 80 J.cm$^{-2}$)

 \[K_{IC} = 11,1 \left(\frac{KCV}{Kv} \right)^{0,375} \]

 (4.47)
b) korelace při teplotě nulové houževnatosti \(t_{NDT} \)

- Pellini [37]
 \[
 \frac{K_{IR}}{R_e} = 2,52 \text{ mm}^{1/2}
 \quad (4.48)
 \]
- Shoemaker a Rolfe [37]
 \[
 \frac{K_{IR}}{R_e} = 3,23 \text{ mm}^{1/2}
 \quad (4.49)
 \]
- Holzmann - Vlach - Mon [40]
 \[
 \frac{K_{IR}}{R_e} = (3,4 \pm 0,3) \text{ mm}^{1/2}
 \quad (4.50)
 \]

Obr. 39

c) korelace s teplotou \(t_{NDT} \)

V [49] je užíváno, že spodní obálku experimentálních hodnot je možno vyjádřit rovnicí (v oblasti teplot od -196 do +20 °C)

\[
\frac{K_{IR}}{R_e} = \frac{5,2,142}{65 - t_R} - 0,06 \quad [\text{ m}^{1/2}]
\]

kde

\[
t_R = t - t_{NDT}
\]

Protože experimentální stanovení dynamické meze kluzu \(R_e \) je obtížné, byl tam též odvozen již dříve uvedený výraz (4.36).

d) korelace s teplotami \(t_{NDT} \) a \(t_{VC} \)

Je popsána např. v [52].

4.25 Referenční křivky lomové houževnatosti

Tyto křivky jsou často využívány pro praktické účely. Určují se empiricky na základě rozsáhlých souborů zkoušek s využitím určité referenční materiálové konstanty, charakterizující tranzitní chování ocelí – některé ze spektra tranzitních teplot. Funkční závislost \(K_{IR} \) na teplotě i volba referenční teploty jsou stanoveny tak, aby \(K_{IR} \) představovala spodní hranici lomové houževnatosti dané oceli.

a) Velmi známý je vztah podle ASME Code, Section XI [26]. V převodu na jednotky MPa.m^{1/2} a °C dostaneme

\[
K_{IR} = 29,424 + 13,675 \exp (0,0261 \ t_R)
\]

kde

\[
t_R = t - R_{NDT}
\]

\(R_{NET} \) je referenční teplota NDT. Stanoví se následujícím postupem (obr. 40):

- určí se teplota \(t_{NDT} \),
- při teplotě \(t = t_{NDT} + 33 \) se provede zkouška Charpy-V,
- je-li při této teplotě \(t \), u každého vzorku absorbovaná energie 86 J.cm^{-2} a příčné rozšíření vzorku alespoň 0,89 mm, pak je \(R_{NET} = t_{NET} \),
- nejsou-li splněny předchozí požadavky, pak se hledá teplota \(t_{SV} \), při níž jsou
již splněny. Potom

\[RT_{NDT} = t_{CV} - 33^\circ C \]

Tato závislost \(K_{IR} = t_{R} \) je znázorněna na obr. 41. V ASME Code, Section XI [26] je uváděna jako závislost \(K_{I_{A}} \).

b) podle Rabotnova [42] je (obr. 42)

\[K_{IR} = \frac{6326,3}{86 - t_{r}} \]

kde

\[t_{r} = t - t_{50\%} \]

\(t_{50\%} \) je tranzitní teplota, při níž při zkoušce vrubové houževnatosti vzorku s V-vrubem má 50% lomové plochy houževnatý charakter.

Uvedený vztah platí pro \(K_{IR} \) menší než 140 MPa.m^{1/2}.

Tyto referenční křivky byly též porovnávány s experimentálními hodnotami lo- mových houževnatostí řady čs. oceli [34]. Pro všechny vyšetřované oceli byla v oblasti vyšších teplot hodnota \(K_{IR} \) podle ASME nižší než podle Rabotnova. Hodnoty lomové houževnatosti určené při dynamickém zatěžování (tj. \(K_{I_{d}} \) nebo \(K_{Q_{d}} \)) byly vždy vyšší než \(K_{IR} \) podle ASME v intervalu teplot nad referenční teplotou.

4.3 Koncepce hustoty deformací energie

U shora uvedené koncepce součinitele intenzity napětí se předpokládá, že iniciovaná trhla (ve všech třech základních případech zatížení) poroste ve smě-
ru původní trhliny. Tento předpoklad je spiněn u laboratorních vzorků, nikoliv však vždy u reálných konstrukcí. Sjezdušená úvaha o růstu trhlin kolmo na směr algebracky největšího hlavního napětí není obecně potvrzena. Rovněž v případech kombinací více typů zatížení trhliny bylo určení směru jejího růstu pomocí koncepcie součinitele intenzity napětí problematické.

Kvalitativní změnu proto znamenalo vypracování koncepce hustoty deformací energie Sihovy \[[54]. Ta umožňuje nejen stanovení podmínek pro iniciaci nestabilního růstu, ale též určit (předpovědět) směr tohoto růstu. Lze tedy kvalifikovat vztah tohoto kritéria ke kritériu součinitele intenzity napětí jako vztah vektoru ke skaláru.

Vysvětlení podstaty této koncepce si ukážeme na problému trhliny v obecně zatíženém tělese (obr. 43). Počátek souřadnicového systému leží v obecném bodě na obrys trhliny. Osa \(x \) leží ve směru normály k tomuto obrysuv, osa \(y \) kolmo k rovině trhliny, osa \(z \) ve směru tečny k obrysuv. V případě rovinné deformace jsou potom složky tenzoru napětí viz \((4.1)\) s úvazkům Sihovy definice součinitele intenzity napětí:

\[
\sigma_x = \frac{k_1}{(2r)^{1/2}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right) - \frac{k_2}{(2r)^{1/2}} \sin \frac{\theta}{2} \left(2 \cos \frac{\theta}{2} \cos \frac{3\theta}{2}\right),
\]

\[
\sigma_y = \frac{k_1}{(2r)^{1/2}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right) + \frac{k_2}{(2r)^{1/2}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2},
\]

\[
\tau_{xy} = \frac{k_1}{(2r)^{1/2}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2} + \frac{k_2}{(2r)^{1/2}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right),
\]

\[
\tau_{xz} = 2\mu \frac{k_1}{(2r)^{1/2}} \cos \frac{\theta}{2} - 2\mu \frac{k_2}{(2r)^{1/2}} \sin \frac{\theta}{2},
\]

\[
\tau_{yz} = \frac{k_2}{(2r)^{1/2}} \sin \frac{\theta}{2}.
\]

V teorii pružnosti byl zaveden pojem měrné elastické energie napajitosti (objemové hustoty deformací energie), akumulované v objemu elementárního prvku:

\[
\lambda = \frac{1}{2\varepsilon} \left\{ \varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_z^2 \right\} - \frac{\mu}{\varepsilon} \left\{ \varepsilon_x \varepsilon_y + \varepsilon_y \varepsilon_z + \varepsilon_z \varepsilon_x \right\} + \frac{1}{2G_p} \left\{ \tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2 \right\} = \frac{dW}{dV}.
\]

Po dosazení \((4.54)\) do \((4.55)\) a úpravě dostaneme

\[
\lambda = \frac{1}{r} \left\{ \sigma_1^2 + 2\sigma_2 \kappa_1 \kappa_2 + \sigma_3 \kappa_2^2 + \sigma_2 \kappa_3^2 \right\} = \frac{S}{r}.
\]
\[S = a_{11}k_1^2 + 2a_{12}k_1k_2 + a_{22}k_2^2 + a_{33}k_3^2 \]
\[k_3 \]
(4.57)

de \(S \) představuje amplitudu nebo intenzitu pole hustoty deformáční energie. Ta se mění s polohovým úhlem \(\theta \). Jednotlivé koeficienty jsou:

\[a_{11} = \frac{1}{16G_S} \left[(3 - 4\mu - \cos \theta)(1 + \cos \theta) \right] \]

\[a_{12} = \frac{1}{16G_S} 2 \sin \theta \left[\cos \theta - (1 - 2\mu) \right] \]

\[a_{22} = \frac{1}{16G_S} \left[4(1-\mu)(1-\cos \theta) + (1+\cos \theta)(3\cos \theta - 1) \right] \]

\[a_{33} = \frac{1}{4G_S} \]

kde \(\mu \) je Poissonovo číslo,
\(G_S \) je modul pružnosti ve smyku.

Lze dokázat [54], že kvadratická forma (4.57) je nezávislá na volbě součinite-
lů intenzity napětí \(k_1, k_2, k_3 \), nebo jinými slovy, že je invariantní vzhledem
k součinitelům intenzity napětí.

Připomeněme si nyní některé souvislosti z teoretické pružnosti vztahující se
k potenciální energii vnitřních sil (energie napjatosti, deformáční energii) \(W \), po-
tenciální energii mějších sil \(L \) a k celkové potenciální energii vnitřních a vněj-
ších sil \(U = W + L \). Protože \(L = -2W \), je též \(U = -W \) - neboli celková potenciální
energie je rovna ráporeň vztahu deformáční energií. Stejná relace platí i pro obje-
mové hustoty těchto energií, tedy

\[\lambda = \frac{dW}{dV} = -\frac{dU}{dV} \]

a potom rovněž - s uvážením (4.56)

\[\frac{dU}{dV} = -\frac{S}{r} \]

Sih založil svoje úvahy na dvou hypotézách:

1. trhlna se bude šťítit ve směru maximální hustoty celkové potenciální energie
neboli ve směru minimální hustoty deformáční energie - tedy ve směru určeném pod-
mínkami

\[\frac{\partial S}{\partial \theta} = 0 \quad \frac{\partial^2 S}{\partial \theta^2} > 0 \quad \text{pro} \quad \theta = \theta_0 \]
(4.59)

2. pro okamžik nestabilního růstu je rozhodující kritická intenzita \(S_C \):

\[S_C \text{ min} = \text{konst} = S \{ k_1, k_2, k_3 \} \quad \text{pro} \quad \theta = \theta_0 \]
(4.60)

Toto kriterium tedy nevyžaduje žádný další předpoklad o směru v němž se bude
trhlna šťítit. Tím jsou odstraněny problémy, které nastávaly u složitějších přípa-
dů zatížení trhliny. Je nyní zřejmé, že jakékoliv losem kriterium založené na
pouze jediném parametru jako je \(k_1 \), nemůže být postačující pro popis kombinova-
vných způsobů lomu.

Využití Sihova kritéria si ukážeme na několika příkladech:
a) I. typ zatížení trhliny (normálový)

Pro takovouto trhlinu v nekonečné stěně platí
\[
k_1 = 6 \cdot a^{1/2} \quad k_2 = 0
\]
a tudíž vztah (4.57) má nyní tvar
\[
S = \frac{\sigma^2 a}{16 G_S} \left[3 - 4\mu - \cos \theta \right] \left[1 + \cos \theta \right]
\]
(4.61)

Extrémních hodnot nabývá tato funkce pro
\[
\theta = 0, \quad \cos \theta = 1 - 2\mu
\]
(4.62)

Druhá derivace (4.61) je
\[
\frac{\partial^2 S}{\partial \theta^2} = \frac{\sigma^2 a}{8 G_S} \left[\cos 2\theta - (1 - 2\mu) \cos \theta \right]
\]
(4.63)

Po dosazení výsledků z (4.62) do (4.63) je zřejmé, že získané \(S \) je minimum
\[
S_{\text{min}} = \frac{(1 - 2\mu) \sigma^2 a}{4 G_S}
\]

Rovina \(\theta = 0 \) odpovídá směru maximální potenciální energie.

Velikost kritického napětí pro iniciaci lomu potom je
\[
g_{cr} = \sqrt{\frac{4 G_S S_{cr}}{(1 - 2\mu) a}}
\]
(4.64)

kde parametr \(g_{cr} a^{1/2} \) je materiálovou konstantou jako v klasickém případě. Parametr \(S_{cr} \) můžeme též vztahovat k povrchové energii \(\gamma \) v Griffithově teorii (viz [1], str. 74), ke \(k_{1c} \) nebo ke \(G_{IC} \):
\[
g_{cr} a = \frac{4 G_S}{1 - 2\mu} S_{cr} = \frac{2E}{\pi (1 - \mu)^2} \gamma = k_{1c}^2
\]

b) II. typ zatížení trhliny (smykový)

Uvažujme těleso s průchozí trhlinou délky \(2a \) (obr. 44) namáhané smykovým napětím \(\tau \) kolným na čelo trhliny. Pro tento případ je
\[
k_1 = 0 \quad k_2 = \tau a^{1/2}
\]
(4.65)

Směr šíření trhliny však není jasný.

Po dosazení do (4.59) dostaneme
\[
S = \frac{\tau^2 a}{16 G_S} \left[4 (1 - \mu) (1 + \cos \theta) + \right.
\]
\[
\left. + (1 + \cos \theta) (3 \cos \theta - 1) \right]
\]
(4.66)

a s uvážením (4.59) po derivování změníme, že
\[
\cos \theta = \frac{1 - 2\mu}{3}
\]
(4.67)

což určuje směr minimálního \(S \).

Druhé řešení sin \(\theta = 0 \) není zajímavé pro šíření trhliny, neboť udává směr maxim-
málního S.

Směr šření tedy závisí na Poissonově čísle. Pro $\mu = 0,3$ tomu odpovídá úhel $\theta_0 = -83,3^\circ$ (záporné znaménko úhlu plyne ze smyslu působícího smykového napětí a z orientace kladného smyslu tohoto úhlu).

Tento závěr znamená výraznou odchylku od klasické koncepce lomové mechaniky, která předpokládá růst trhlin v jejím původním směru. V této souvislosti je možno se též kriticky vyjádřit k hnací síle trhlin G_{II}, odvozované pro shora uvedený předpoklad. Její velikost proto nemusí být správná pro reálné případy.

S použitím kritérií maximálního napětí lze odvodit velikost úhlu $\theta = -70,5^\circ$, což odpovídá materiálu s nulovým Poissonovým číslem.

c) smíšený tvar zatížení (kombinace I + II)

Uvažujme opět taženou stěnu s trhlinou podle obr. 45. Z podmínky rovnováhy dostaneme velikost napětí

$$\sigma' = \sigma \cdot \sin \beta$$

$$\tau' = \sigma \cdot \sin \beta \cdot \cos \beta$$

Součinitelé intenzity napětí tedy jsou

$$k_1 = \sigma \cdot a^{1/2} \sin \beta$$

$$k_2 = \sigma \cdot a^{1/2} \sin \beta \cdot \cos \beta$$

Podle klasických představ dochází k šření trhliny ve směru kolmém na algebraicky největší normální napětí, neboli ve směru kolmém na největší hlavní napětí tedy ve směru, v němž je smykové napětí nulové:

$$\tau = \frac{\sigma_x - \sigma_y}{2} \sin 2\theta_0 - \tau_{xy} \cos 2\theta_0 = 0$$

neboli po dosazení z (4.1)

$$k_1 \sin \theta_0 + k_2 (3 \cos \theta_0 - 1) = 0$$

Po dosazení za k_1 a k_2 z rovnice (4.68) plyne pro tuto podmínku směr počátečního růstu trhliny

$$\sin \theta_0 + (3 \cos \theta_0 - 1) \cot \beta - 0$$

(4.69)

Jak je zřejmé, tento úhel nezávisí na materiálových charakteristikách.

Součinit hustoty deformace energie v našem případě je

$$S = \sigma^2 a (a_{11} \sin^2 \beta + 2 a_{12} \sin \beta \cdot \cos \beta + a_{22} \cos^2 \beta \cdot \sin^2 \beta)$$

a tedy z podmínky extrému (4.59) dostaneme

$$2 (1-2\mu) \sin (\theta_0 - \beta) - 2 \sin \left[2 (\theta_0 - \beta) \right] - \sin 2\beta_0 = 0$$

Tak na příklad, je-li trhlna v taženém pásu skloněna o úhel $\beta = 30^\circ$ od směru působícího tahového napětí, bude za předpokladu růstu kolmo na směr maximálního hlavního napětí úhel $\theta_0 = 60^\circ$.

- 74 -
- podle Sihovy teorie (pro $\mu = 1/3$) $\Theta_0 = -63,5^\circ$.

Vedle těchto úvah o směru inicace křehké trhliny si na závěr ukažme fyzikální interpretaci Sihovy teorie. Pro charakterizování chování materiálu s trhlinou je třeba jasně rozlišovat mezi S a S_{cr}. Veličina S - součinitel hustoty deformací energie - je řídícím součinitelem rozvoje v řadu hustoty deformací energie dW/dV pro kořen trhliny $r = 0$, závisí na polohovém úhlu Θ. V blízkosti kořene trhliny je možno na S pohlížet jako na sílu odporu proti růstu trhliny. Trhla má potom snahu šifit se ve směru tohoto nejmenšího odporu, tedy ve směru minimální hodnoty S. Dosáhne-li S své kritické hodnoty S_{cr} v bodě začínajícího lomu, může být povazována za sílu nutnou pro rozšířování trhliny. Ta by měla být nezávislá na podmínkách zatěžování a konfiguraci trhliny. S_{cr} tak může být materiálovou konstantou, která je měřitelná jeho lomové houževnatostí. Není tedy podle Sihy "pevnost" materiálu charakterizována lomovým napětím (maximálním napětím při lomu), ale materiálovou konstantou S_{cr}.

4.4 KONCEPCE KRITICKÉHO ROZEVŘENÍ TRHLINY

4.41 Podstata a teoretické základy koncepce

Byla to prvá metoda, která se pokoušela o formulaci podmínek nestability trhliny, jestliže docházelo k porušení po značné plastické deformaci. To je totiž u oceli nízké a střední pevnosti případ nejčastější, neboť u nich ani obvyklá tloušťka ani pracovní teplota nedosahují hodnot předpokládajících porušení při rovinné deformaci a platnosti lineární lomové mechaniky.

Tento návrh - uvažovat přemístění u kořene trhliny jako jeden z parametrů lomové mechaniky - publikovali v roce 1961 nezávisle na sobě Wells, Cottrell a Barrenblatt. K nestabilnímu lomu potom dojde (u daného materiálu, při dané teplotě, tloušťce a rychlosti zatěžování) tehdy, až rozevření trhliny dosáhne své kritické velikosti. Tato kritická velikost je materiálovou konstantou, nezávislou na geometrii tělesa, velikosti a konfiguraci trhliny. Pro obtíže vyplývající z nelineárních vztaň pro napětí a přetvoření nebyla tato koncepce COD (Crack-Opening Displacement) teoreticky tak propracována jako koncepce součinitele intenzity napětí v LELM. Vzhledem ke své jednoduchosti a nenáročnosti se však využívá doposud a to i např. ve směrnici PD 6493 [27].
(III) (stretch zone - oblast intenzivní deformace, zóna roztažení). K roztržení materiálu v místě největší hustoty dutin (v oblasti tzv. procesní zóny) dochází při iniciaci hodnotě otevření trhliny ϕ_0. Při dalším vzrůstu zatížení je u ocelí s nízkou plasticitou následující subkriticky růst velmi malý. K rozvoji nestabilního losu dochází při dosažení kritické hodnoty rozevření ϕ_c. Obě veličiny ϕ_0 i ϕ_c závisí na teplotě.

Toto chování popsal Dugdale teoretickým modelem (pro $\phi < R_e$), podle něhož má plastická zóna tvar klínů, na nějž působí konstantní napětí rovné mezi klínů.

Délka této zóny pak je

$$ s = a \left(\sec \left(\frac{\pi \phi}{2 R_e} \right) - 1 \right) $$

(4.71)

Užitím tohoto modelu za podmínky rovinné napjatosti odvodi Burdekin a Stone výraz pro otevření u kořene skutečné trhliny ve tvaru

$$ \phi = \frac{8 R_e a}{a} \cdot \ln \sec \left(\frac{\pi \phi}{2 R_e} \right) $$

(4.72)

Jestliže rovníme tento výraz v řadu a pro $\phi << R_e$ uvážíme pouze její první člen, dostaneme

$$ \phi = \frac{8 R_e a}{2 \pi R_e a} = \frac{K}{E R_e^2} = \frac{R_e}{G_r} $$

(4.73)

V důsledku existence plastické zóny tedy dochází v oblasti u kořene trhliny k přerozdělení pole napětí a přetvoření, k otupování kořene trhliny, k jejímu roztržení (u dokonař křehkého materiálu samozřejmě nemá smyslu o tom hovořit).

Významnou skutečností je, že ϕ může být určováno jak v oblasti elastické, tak i plastické.

Pro praktické výpočty se zavedl bezrozměrný parametr

$$ \phi = \frac{E \phi}{2 \pi R_e a} = \frac{\phi}{2 \pi \varepsilon_0 a} $$

(4.74)

Ten nabývá v elastické oblasti hodnot

- $A1 - z \quad (4.72)$

$$ \phi = \frac{4}{\pi^2} \ln \sec \left(\frac{\pi \phi}{2 R_e} \right) $$

(4.75)

- $A2 - z \quad (4.73)$

$$ \phi = \frac{1}{2} \left(\frac{\phi}{R_e} \right)^2 $$

(4.76)

Odpovídající průběhy jsou znázorněny na obr. 47.

Koncepcie rozevření trhliny však je určena především pro oblast, kde $\phi > R_e$
- zde je však k dispozici podstatně méně prací než v elastické oblasti. Vzhledem k obtížnosti a složitosti problému jsou proto závislosti zatížení-rozevření získávány především na základě provedených experimentů. Na obr. 47 jsou uvedeny některé nejčastěji užívané výsledky, využívající lineární závislosti:

- B1 - experimenty na tažených širokých desekách (spíše stěnách) (jejich horní hranice je přímkou B4)

$$ \phi = \frac{1}{2} \frac{\varepsilon}{\varepsilon_0} = 0,125 $$

(4.77)

- B2 - japonský návrh JWES [59]

$$ \phi = \frac{1,75}{\pi} \frac{\varepsilon}{\varepsilon_0} $$

(4.78)
- B3 - přímka, která je tečkou k A2 (k elastickému modelu) v bodě $\frac{\varepsilon}{\varepsilon_e} = Re$

\[\phi = \frac{\varepsilon}{\varepsilon_e} - 0.5 \quad (4.79) \]

- B4 - Burdekin a Dawes - použito i ve směrnici PD6493 [27]

\[\phi = \frac{\varepsilon}{\varepsilon_e} - 0.25 \quad (4.80) \]

Odlisný charakter těchto jednotlivých závislostí svědčí o tom, že
- každá konfigurace trhlin, resp. modelové těleso mají vlastní (typickou) závislost,
- sklon čáry je určen velikostí deformace a zpětně menší materiálu (čím vyšší je součinitel zpevňení, tím je sklon menší).

Pro analýzu lomů z toho vyplývá, že při zanedbání deformace zpětně menší je nutno vycházet z čer představujících horní mez rozptylu experimentálních hodnot pro analogickou konfiguraci trhlin - např. trhliny přes celou tloušťku stény z B4 z rovnic (4.80).

Přes dlouhodobé používání a postupně ztěžování koncepce COD se nepodařilo odstranit některé překážky spojené zejména se nejednotností definice rozevření v kořene trhliny a s nepřesností přepočtu měřeného rozevření na povrchu tělesa na kořen trhliny. Tyto otázky vystupují zvláště do popředí při porovnání tohoto kritéria s kritériem J_{IC}. V tomto směru se nabízí jako velmi efektivní použití metod konečných prvků. Možností pro definování rozevření u kořene trhliny je několik tak některé.

- Z výsledků pro CT vzorky a tříbodový ohyb vyplývá, že u kořene trhliny se vytváří s rostoucím zatěžováním výrazný nos, na který bezprostředně navazuje lineární část profilu, kterou lze extrapolovat na kořen trhliny. Tak lze definovat nenulové rozevření trhliny v jejím kořeni - i když skutečné rozevření v kořeni je nulové. Tato definice však nemá obecnou použitelnost (existence přímkové části profilu, která podmíná extrapolaci, se neobjevila např. u vzorků s centrální trhlinou zatíženou takem. Takto zavedené rozevření nemá přímý fyzikální smysl a ztrácí význam pro malé hodnoty zatěžování (tj. v oblasti LELM).

- Další možností je stanovit velikost rozevření na hranici plastické oblasti. Takto definované rozevření je jednoznačné a lze je použít pro všechny druhy vzorků. Navíc je toto definice platná i v případě plastických deformací malého rozsahu, kde je takto zavedené kritérium identické s kritériem K_{IC}.

- Pro řešení problému rozevření trhlin metodou konečných prvků se k definování rozevření využívá složky posunutí prvního uzlového bodu volného povrchu trhliny.
4.42 Určení kritického rozveření trhliny

Jednou z velkých překážek při rozpracování tohoto kriteria bylo zjištění skutečné velikosti kritického rozveření u kořene trhliny. Pro kvantitativní popis lo- mového procesu je rozhodující velikost tohoto rozveření uprostřed tloušťky vzorku a ne na povrchu tělesa. Měření kritického rozveření na boku zkušebního tělesa proto nemá praktický význam. Rozveření u kořene trhliny můžeme zjišťovat:

1. přímým měřením u kořene trhliny,
2. pomocí úvahy o současného rozveření vrubu na dvou místech s následujícím přepočtem,
3. měřením rozveření vrubu na povrchu tělesa s přepočtem pro kořen trhliny.

ad 1. Přímé měření je uskutečnitelné pouze na mechanicky opracovaných vrubech (šířekých 0,4 až 0,6 mm), umožňujících vložení speciálního snímače ve tvaru vrtulky. Tento způsob nejde využít u nacyklovaných trhlinek východících z vrubů.

ad 2. Vzorek, zatěžovaný čtyřbodovým ohybem, je opatřen dvěma stejně velkými vru- by s nacyklovanými stejnými únavovými trhlinami. Při zatěžování dojde k iniciaci lomu pouze z jednoho vrubu. Za předpokladu, že v okamžiku těsně předcházejícím lomu byly poměry v obou vrubech stejné, je možno na neporušeném vrubu změřit (po rozšíření vzorku) jeho rozveření.

ad 3. Při tomto způsobu se měří rozveření vrubu na vnějším povrchu a přepočtem se určí rozveření v kořeni trhliny.

Přepočet se provádí
- podle Wellsovo vztahu - výpočet je složitý a málo přesný,
- za předpokladu existence plastického kloubu v průřezu pod vrubem. Tento způsob je použit i v návrhu ČSN 42 0347 :47.

Hodnotu kritického rozveření je možno v tomto případě rozložit na elastickou a plastickou složku:

\[
\sigma_c = \sigma_{CE} + \sigma_{CP}
\]

pro něž platí

\[
\sigma_{CE} = \frac{1 - \nu^2}{2 \frac{E}{K_C}} \cdot K_C^2
\]

\[
\sigma_{CP} = V_{CP} \left[1 + \frac{1}{V_p} \cdot \left(\frac{W - \alpha}{\alpha - \alpha} \right) \right]^{-1}
\]

\[
K_C = \text{smluvní lomová houževnatost (postup jejího určení je stejný jako při zkoušce } K_{IC}'),
\]

\[
V_{CP} = \text{plastická složka rozveření vrubu,}
\]

\[
r_p = \text{rotační součinitej. Pro jeho stanovení byla předložena řada návrhů. V cí- tovaném návrhu ČSN 42 0347 je použit způsob jeho výpočtu rozpracovaný ve VÚZ Bratislava, respektujič velikost jmenovitého napětí v nosném průřezu a kori- govaný s ohledem na proměnnou délku trhliny.}
\]

Vypočítaná hodnota \(\sigma_c \) je charakteristickou odolností materiálu proti inici- ací křehkého porušení v elasticko-plastické oblasti a je lomovou houževnatostí ur- čenou z rozveření vrcholu trhliny \(\sigma_m \), jestliže jsou splněny požadavky

- na velikost součinitele intenzity napětí při vytváření únavové trhliny,
- na tvar únavové trhliny,

- 78 -
- na velikost únavové trhliny a na velikost výšky nosného průřezu
\[\text{min } \alpha \geq 50 \delta_C, \quad \text{min } (W - \alpha) \geq 50 \delta_C \]

V některých jiných případech je možno se setkat s méně přísným požadavkem - s pouze 30-násobkem \(\delta_C \).

Při porovnání údajů \(\delta_C \) s jinými parametry lokové houževnatosti se používá vztah (47) \[K_Y = \frac{\varepsilon_s}{\sqrt{2E}} \frac{\delta_C}{\delta_{IC}} \]

Takovýto způsob převodu mezi dvěma odlišnými kritériemi není zcela korektní - jedná se zde spíše o matematický formalismus. Potom je těž problematikální spojivost určení přípustného nahnání nebo kritické velikosti trhliny vycházející z takto stanovené lokové houževnatosti.

4.43 Stanovění kritické velikosti trhliny

Pro kritickou velikost trhliny platí analogicky k (4.74)
\[a_C = \frac{\delta_C}{2} \frac{3E}{R_0 \varepsilon} \]

Podle japonského návrhu JWES [59] je
\[a_C = \frac{\delta_C}{3,5 \varepsilon} \]

\[\varepsilon = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \]

\[\varepsilon_1 = \varepsilon_1 (S_1 + \varepsilon_2 (\alpha_1 \delta_0)) \]

kde \(\alpha \) ekvivalentní délka trhliny (délka ostré průchozí trhliny v nekonečné stěně),
\(S_1 \) membránové napětí,
\(\delta_0 \) ohybové napětí,
\(\alpha_0 \) součinitel vlivu ohybového napětí,
\(\alpha_1 \) součinitel vlivu průchozí trhliny,
\(\alpha_2 \) součinitel vlivu povrchového napětí,
\(\alpha_3 \) součinitel tvaru - vyskytuje-li se vada v oblasti koncentrace napětí.

Pro stanovení přípustné velikosti vady \(a_m \) se používá tzv. návrhová křivka
\[a_m = C \frac{\delta_C}{\delta_m} - \frac{1}{2} \frac{\delta_C}{\varepsilon_m} \frac{\delta_C}{\varepsilon_e} \]

kde

- pro \(S_v \leq \frac{1}{2} R_0 \) je \(\delta_m = \left(\frac{S_v}{R_0} \right)^2 \)

- pro \(S_v > \frac{1}{2} R_0 \) je \(\delta_m = \frac{\varepsilon_m}{\varepsilon_e} - 0,25 \)
V porovnání s (4.83) zde tedy je uvažován součinitel bezpečnosti η.

V těchto vztazích je σ_v výsledné napětí, tj. součet napětí σ_p primárních, σ_q sekundárních, σ_s špičkového a residuálního. Příslušná deformace ε se pak určí:
- jako σ_v / E a to tehdy, je-li součet primárních a sekundárních napětí (bez residuálního) menší než 2σ,
- pružně-plastickou analýzou, je-li součet větší než 2σ.

Obdobně jako tomu bylo u koncepce K_{ic} vystavěno i u koncepce COD otážka vymezení oblasti její použitelnosti. I zde je možno požadovat splnění stejných podmínek pro lomové kriterium i pro použitelnost metody. Otázkou je, jak se bude rozvíjet lomový proces při trhlinách kratších než udává kriterium (4.81). Bylo zjištěno [46], že u zkušebních vzorků s kratšími trhlinami než předepisuje podmínka (4.81) vzniká výrazně lomová houževnatost v porovnání s "platnými" hodnotami. Na základě porovnání vypočítaného (z experimentálních výsledků na "platných" vzorcích) a experimentálního (na "neplatných" vzorcích) lomového napětí bylo možno konstatovat, že v celém rozsahu kratších délek trhlin bylo předpovězeno nižší lomové napětí. Při posuzování kratších trhlin s využitím lomových houževnatostí získaných na standardních vzorcích jsme tedy na bezpečné straně. Míra bezpečnosti závisí na použité metodě (81 - 84).

Shora uvedený postup zahrnutí residuálních napětí je dosti konzervativní. Analýzou experimentálních údajů se zjistilo, že přítomnost residuálních napětí snižuje zatížení do lomu u materiálů s nízkou houževnatostí. Při vysokých hodnotách lomové houževnatostí, resp. při režimech zatížení se značným plastickým přetvořením se nezjistil vliv residuálních napětí [24]. To znamená, že je opodstatněné brát v úvahu v plné míře residuální napětí v elastickém režimu a postupně méně v režimu pružně-plastickém až plastickém. To je pak možno realizovat např. tak, že budeme uvažovat celkový součinitel $\phi_c = \phi + \phi_r$.

Tento návrh je založen na představě, že v kořeni trhliny dojde vlivem zbytkového napětí σ_c k rozvěení σ_c, kterým se sníží houževnatost materiálu σ_c související s trhlinou bez residuálního napětí. Protože hodnota σ_c je v pružně-plastické (houževnatější) oblasti relativně vyšší než v pružně (krhčí) oblasti, bude se vliv zbytkových napětí uvažovat progresivně s klesající houževnatostí. Potom tedy je

$$\phi_c = \frac{4}{2} \ln \sec \left(\frac{\pi \sigma_c}{2 R_e} \right) + \phi_r = \frac{E \sigma_c}{2 R_e}$$

(4.86)

Ve všech shora uvedených výrazech se velikost trhliny vztahuje k průčelí (centrální) trhliny v tažené stěny. S využitím vztahů platných pro součinitele intenzity napětí lze potom k této trhlině nalézt ekvivalentní trhlinu eliptickou nebo pololiptickou (jako ještě uvedeno v kap. 6 a 7).

Z uvedeného je zřejmé, že koncepce COD poskytuje jednoduché vztahy pro posuzování vad (které se též dostaly do některých norm a předpisů) a představuje srozumitelnou filozofii pro stanovení podmínek iniciace lomu i nad mezí kluzu. Největší význam má rozvěení trhliny není jednoznačným parametrem, určujícím napěťové-deformacní stav trhliny, může být vyvážen použitím experimentálně stanovených závislostí zatížení - rozvěení trhliny pro různé tvary těles a konfigurace trhlin.
4.5 KONCEPCE J - INTEGRÁLU

4.51 Teoretické základy koncepce ([25],[53])

1. Definice J-integrálu

Pojem J-integrálu zavedl poprvé Rice (1968) s cílem sledovat koncentraci deformace k níž dochází v blízkosti vrcholu trhliny v materiálu s nelineární závislostí napětí - přetvoření. Takovéto materiály se studují z různých hledisek. Velká pozornost se věnuje jejich pružno-plastickému chování při porušení.

Uvažujme homogenní těleso, jehož materiál vykazuje lineární nebo nelineární vlastnosti a v něm nepůsobí objemové síly. Předpokládejme, že v tomto tělese je dvourozměrně deformácí pole (rovinná deformace, zobecněná rovinná napjatost, antirovinná deformace), jehož složky tenzoru napjatostí \(\sigma_{ij} \) jsou určeny pouze dvěma pravodílnými souřadnicemi \(x_1 = x, x_2 = y \). V tělese je vrub, jehož volné povrchy jsou rovnoběžné s osou \(x_1 \) (obr. 49). Přímá trhлина je potom mezním případem takového vrubu (s poloměrem \(r \to 0 \)). Pro takovéto těleso je objemová hustota deformací energie

\[
\lambda = \int \sigma_{ij} \epsilon_{ij} \, d\Gamma
\]

kde \(\epsilon_{ij} \) jsou složky tenzoru (ne nutně matematických) přetvoření.

V uvedeném případě je možno definovat J-integrál ve tvaru

\[
J = \int_\Gamma \left(\lambda dx_2 - T_i \, u_i \, ds \right)
\]

(4.87)

křivka vedená kolem kořene vrubu. Integrace začíná na dolním povrchu vrubu po dělí křivky \(\Gamma \) proti pohybu hodinových ručiček,

\(T_i \) - vektor napětí pásoucí ve směru vektoru \(\mathbf{n} \) větší normály křivky \(\Gamma \),

\(u_i \) - odpovídající složky vektoru posunutí,

\(ds \) - element na křivce \(\Gamma \).

(Analogaický integrál definoval nezávisle též Čerepanov).

Pro takovéto geometrické uspořádání lze dokázat, že integrál, definovaný vztahem (4.87) je nezávislý na volbě integrální cesty, tedy nezávislý na tvaru křivky \(\Gamma \). Předpokládejme, že pole napětí, přetvoření a posuvů v tělese s vrubem je charakterizováno veličinami \(\sigma_{ij}, \epsilon_{ij}, u_i \). Při důkazu nezávislosti \(J \) na \(\Gamma \) uvažujme nejprve dvě libovolné křivky, které obklopují kořen vrubu (obr. 49). Křivky \(\Gamma_1, \Gamma_2 \) a odpovídající části povrchu vrubu \(\Gamma_3, \Gamma_4 \) (kde platí \(x_2 = 0 \) a tedy \(dx_2 = 0 \)) tvoří uzavřenou křivku \(\Gamma^* \), která ohraničuje (jednoduše souvislou) oblast.
\[J_{r,n} = \int_{r} \left(\lambda \, dx_2 - T_i \, u_{i,1} \, ds \right) = \left[\frac{\partial \lambda}{\partial x_1} - \frac{\partial u_i}{\partial x_j} \left(\frac{\partial E_{ij}}{\partial x_1} \right) \right] dx_1 \, dx_2 \] (4.88)

Protože uvažujeme elastický materiál s nulovými objemovými silami, platí též

\[\frac{\partial \lambda}{\partial x_1} = \frac{\partial \lambda}{\partial E_{ij}}, \quad \frac{\partial E_{ij}}{\partial x_1} = \delta_{ij} \frac{\partial u_j}{\partial x_1} = \delta_{ij} \frac{\partial u_j}{\partial x_1} \left(\frac{\partial u_i}{\partial x_1} \right) \]

Tedy plošný integrál v (4.88) je identicky roven nule a proto

\[\int_{r} \left(\lambda \, dx_2 - T_i \, u_{i,1} \, ds \right) = 0 \]

pro libovolnou uzavřenou křivku \(r \) s uvedenými vlastnostmi. Pro křivky \(\Gamma_1, \Gamma_2 \) (předpokládejme, že na povrchu vrubu je nulové zatížení \(T_i = 0 \) a tedy \(J_{\eta_1} = J_{\eta_2} = 0 \)) bude platit

\[J_{r,n} = J_{\eta_1} - J_{\eta_2} = 0 \]

Zvolíme-li dále orientaci křivek \(\Gamma_1, \Gamma_2 \) souhlasně, dostaneme požadovaný výsledek

\[J_{\eta_1} = J_{\eta_2} \]

a tedy hodnota integrału \(J \) nezávisí na volbě křivky \(\Gamma \).

V uvedeném odvození musí složky napětí a přetvoření splňovat podmínky pro použití Greenovy věty pro převod křivkového integrału na plošný. Zejména nesmí mít \(\delta_{ij} \), \(\epsilon_{ij} \) žádou singularitu v oblasti \(\Omega \) (uvažujme pouze jeden vrub) a \(\delta_{ij} \) musí být jednoznačnou funkcí \(E_{ij} \) (případ jednosměrného zatížování).

Předpokládejme nyní případ elastického zatížování (neuvažujme vliv plasticit-ty). Zvolíme-li křivku dostatečně blízko kořene vrubu, bude zřejmá hodnota \(J \)-integrału záviset pouze na lokálním poli v okolí kořene. Lze tedy použít hodnotu \(J \) jako veličinu charakterizující chování kořene vrubu, tj. popisující typ singularity napětí a přetvoření vytvořené vrubem.

Speciálně lze volit \(\Gamma = \Gamma_1 \) (eventuálně \(\Gamma = \Gamma_2 \) ke koření trhliny v limitě) a

\[J = \int_{\Gamma} \lambda \, dx_2 \]

Význam \(J \)-integrału v lomové mechanice tedy spočívá v tom, že veličinu (hodnotu \(J \)), která popisuje a charakterizuje napěťové a deformaci pole v blízkosti kořene vrubu (kde je řešení komplikované a obtížné) lze stanovit na základě řešení v oblastech dostatečně vzdálených od kořene.

U většiny materiálů však dochází v místech vysoké koncentrace ke vzniku plastických deformací. Pro popis chování kořene vrubu s plastickou zónou potom nelze použít rovnic elastického prostředí.

Móžnost použití \(J \)-integrału pro studium těchto případů potom souvisí s platností jeho nezávislosti na integrační cestě i pro plasticity se chovající materiály. Je to tedy o tázku platnosti vztahu

\[J_{p} = J_{\Gamma_E} \]

dkde \(\Gamma_E \) je křivka ležící v plastické oblasti a \(\Gamma_E \) křivka ležící v elastické oblasti.

Při použití deformální teorie plasticity (což je v podstatě nelineární teorie...
pružnosti) zůstává v platnosti nezávislost J-integrálu na integrační cestě. V tomto případě tedy je J veličinou charakterizující i plastické vlastnosti v oblasti u kořene vrubu. Pro inkrementální teorií plasticity (která je nejvýhodnější pro popis plastického chování kovů) se však dosud nepodařilo obecně dokázat tuto nezávislost na integrační cestě.

2. J-integrál při plasticitě malého rozsahu

Uvažujme nyní vrub ve tvaru ostře trhliny v taženém pásu (s normálním napětím kolným na rovinu trhliny - typ zatížení I podle dříve uvedeného obr. 21).

Nechť za daných poměrů je velikost vzniklé plastické zóny mnohem menší než je velikost trhliny a rozměry tělesa. Uvažujeme-li stav rovinné deformace, pak napětí pro lineární elastické řešení jsou dána vztahem (4.1). Tato rovnice, charakterizující elastickou singularitu, bude dobře popisovat napětí ve vzdálenostech větších než je velikost plastické zóny a přitom současně malých ve srovnání s velikostí trhliny a rozměry tělesa. Pro stanovení hodnoty J-integrálu lze nyní využít jeho nezávislosti na integrační cestě a za křivku lze zvolit kružnici o poloměru r = R, kde R → ∞. Po provedení odpovídajícího výpočtu bychom dostali pro rovinou deformaci nebo pro rovinou napjatost

\[J_I = \frac{1-\nu^2}{E} K_I^2 \]

(4.89)

Pro obecnější zatížování lze obdobně odvodit

\[J = \frac{1-\nu^2}{E} \left(K_I^2 + K_{II}^2 \right) + \frac{1+r\nu}{E} K_{III}^2 \]

(4.90)

Takto (z elastického řešení) stanovená hodnota J charakterizuje typ plastické singularity napětí při přetvoření v okolí kořene trhliny při uvažování deformací teorie plasticity.

Po porovnání těchto vztahů s (4.7), (4.8) dospěli jsme k závěru, že J-integrál je ekvivalentní rychlosti uvolňování elastické energie (hnací síly trhliny) G.

3. Energetická interpretace J-integrálu

Výjádíme-li si celkovou potenciální energii tělesa (vnitřních a vnějších sil) (jednotkové tlučnosti)

\[U = \int_{\Gamma} \lambda \, dx_1 \, dx_2 - \int_{\Gamma^x} T \cdot u_{\parallel} \, ds \]

kde \(\Gamma^x \) je část \(\Gamma \), na níž jsou předepsány okrajeví podmínkami zatížení T. Je-li \(U(a) \) potenciální energie tělesa s vrubem (trhlinou) dělí G, potom lze dokázat, že platí (např. [25])

\[J = \lim_{s_0 \to 0} \frac{U(a_0 + \Delta a) - U(a)}{\Delta a} = \frac{\partial U}{\partial a} \frac{a}{\Delta a} \]

(4.91)

- 83 -
4.52 Metody určení J-integrálu

Nelineární lomová mechanika se stala významným nástrojem umožňujícím řešit úlohy nezvládnutelné pomocí LELM. Zatímco v LELM je již uspokojivě vyřešena otázka stanovení charakteristických parametrů, nelze totéž tvrdit o EPLM.

Velikost J-integrálu je možno v zásadě určovat:
a) na základě energetické interpretace podle vztahu (4.91),
b) numericky.

ad a) Pro tento způsob byla navržena celá řada metod. Podstata těch nejvýznamnějších je uvedena např. v [25], [53].

- Begley a Landes navrhli použití vzorků s různými délkami trhlin, při jejichž zatáčkování se ze změněné závislosti říla - posunutí jejího působíště určuje potenciální energie zkušených těles.

- Bucci se spolupracovníky využili elastického řešení a analyzy mezního stavu, podle něhož při plastifikaci nedochází k deformacičnímu zpevňování. To jim umožnilo sestrojit závislosti zatížení - posunutí pro různé dély trhliny a tedy i určit velikost odpovídající potenciální energii. Při tomto postupu by nebylo nezbytné uvažovat pružně-plastické deformace před úplnou plastifikací. V případě jejich uvažování doporučuji: uvažovat efektivní délu trhliny (viz obr. 29).

- Rice se spolupracovníky navrhli zjednodušenou závislost, podle níž diagram zatížení - posunutí závisí pouze na velikosti nosného průřezu (tedy průřezu zmenšeného ho trhliny). Tyto závislosti určili pro některé typy vzorků - plochého taženého se dvěma bočními trhlinami nebo s centrální trhlinou, válcového taženého s obvodovou trhlinou, vzorku pro trojbodový ohyb a CT-vzorku.

- Merkle a Corten navrhlí rovněž zjednodušenou (avšak v porovnání s Rice výstřednější) závislost pro plastickou složku J-integrálu u CT-vzorku.

ad b) prakticky výhradně se v tomto případě používá metody konečných prvků. Neznačnost exaktních řešení pružně-plastického chování materiálů však neumožňuje přímé ověření numerických postupů, případně konstrukce speciálních trhlinových prvků. Pokud není rozsah plastických deformací příliš velký, je možno považovat výsledky získané pomocí MKP za spolehlivé.

Metody mohou být opět různé:
- využití definičního vztahu (4.87) - to je nejobvyklejší způsob,
- numerická simulace shora uvedené metody od Beglehy a Landese,
- s pomocí zjednodušených závislostí, které uvedli Rice nebo Merkle s Cortenem.

4.53 Lomová houževnatost J_{IC}

Podle návrhu ČSN 42 0347 [47] se používají k tomuto účelu vzorky pro trojbodový ohyb nebo CT vzorky (obdobně jako při zkoušce K_{IC} nebo COD). Při zkoušce se získá diagram zatížení F - přemístění působíště síly f (obr. 50). Plocha tohoto diagramu A_C se rozhodí na pružnou A_{CE} a plastickou A_{CP} část. Kritická hodnota J_C se potom vypočítá podle vztahu

$$J_C = J_{CE} + J_{CP} = \frac{1-A^2}{E} K_C^2 + \frac{X_i \cdot A_{CP}}{B \sqrt{W-a}}$$

- 84 -
kde K_c je informativní hodnota lomové houževnatosti - získá se postupem uvedeným u metodiky zkoušky K_{IC}.

X_i je součinitel závislý na typu zkušebního tělesa,
B je tloušťka tělesa,
W je šířka tělesa,
a je délka trhliny.

Vypočítaná hodnota J_c je charakteristikou odolnosti materiálu proti iniciování křehkého porušení v elasticco-plastické oblasti a je lomovou houževnatostí určenou z J-integrálu (J_{IC}), jsou-li splněny požadavky:

$$\min \left\{ a; \frac{B}{W-a} \right\} \geq 50 \frac{J_c}{R_s+R_m}$$ \hspace{1cm} (4.92)

- na velikost součinitele intenzity napětí při vytváření únavové trhliny,
- na tvar únavové trhliny.

Nejsou-li splněny uvedené podmínky, je J_c pouze informativní hodnotou. V takovém případě se doporučuje vyzkoušet další zkušební těleso při nižších teplotách nebo pro danou teplotu použít větší zkušební těleso.

Charakteristikou J_{IC} je možno vyjádřit lomovou houževnatost pomocí vztahu

$$K_{IC} = \sqrt{E' \cdot J_{IC}}$$ \hspace{1cm} (4.93)

kde E' je modul pružnosti při rovinné deformaci platí

$$E' = \frac{E}{1-\nu^2}$$

4.54 Stanovení kritické velikosti trhliny

Pro stanovení kritické velikosti trhliny v tažené nekonečné stěně byly navrženy různé typy mezních křivek:
- Begley, Landes a Wilson [60]
 - v elasticke oblasti ($S \leq R_s$)
 $$a_c = \frac{E \cdot J_{IC}}{2 \pi R_s^2 \left(\frac{S}{R_s} \right)^2}$$ \hspace{1cm} (4.94)
 - v elasto-plastické oblasti ($S > R_s$)
 $$a_c = \frac{E \cdot J_{IC}}{2 \pi R_s^2 \left(\frac{S}{R_s} - 0.5 \right)}$$ \hspace{1cm} (4.95)
- Turner [61] na základě analýzy metodou konečných prvků
 - pro $S \leq 2\varepsilon_s$
 $$a_c = \frac{E \cdot J_{IC}}{2 \pi R_s^2 \left(\frac{S}{\varepsilon_s} \right)^2}$$ \hspace{1cm} (4.96)
- pro \(\varepsilon > 2\varepsilon_e \)
 \[
 \alpha_c = \frac{E J_T}{20 R_e^2 \left(\frac{6}{\varepsilon_e} - 0.75 \right)}
 \]

- Sumpter a Turner [62] navrhli na základě experimentů mezní křivku jako horní obálku experimentálních údajů pro tělesa s bočním vrubem namáhaná tahem nebo ohybem, pro taženou stěnu s trhlinou vycházející z otvoru a pro tlustostěnný válce s trhlinou. Při vyjádření součinitele intenzity napětí ve tvaru
 \[
 K_I = Y_1 \cdot \gamma \sqrt{a} = Y_1 \cdot \frac{E G_e}{\alpha a}
 \]

a pro
 \[
 E G_e = Y_2^2 R_e^2 \cdot a
 \]

je tato mezní křivka se třemi větvemi určena takto:

- pro \(\varepsilon / \varepsilon_e \leq 0,85 \)
 \[
 \frac{J_T}{G_e} = \left(\frac{\varepsilon}{\varepsilon_e} \right)^2 = \frac{E J_T}{Y_1^2 R_e^2 \cdot \alpha}
 \]

- pro \(0,85 \leq \frac{\varepsilon}{\varepsilon_e} \leq 1,2 \)
 \[
 \frac{J_T}{G_e} = 5 \left(\frac{\varepsilon}{\varepsilon_e} - 0,7 \right) \quad \alpha = \frac{E J_T}{5 \pi Y^2 R_e^2 \left(\frac{\varepsilon}{\varepsilon_e} - 0,7 \right)}
 \]

- pro \(\varepsilon / \varepsilon_e > 1,2 \)
 \[
 \frac{J_T}{G_e} = 24 \left(\frac{\varepsilon}{\varepsilon_e} - 0,2 \right) \quad \alpha = \frac{E J_T}{24 \pi Y^2 R_e^2 \left(\frac{\varepsilon}{\varepsilon_e} - 0,2 \right)}
 \]

V případě trhlin vycházejících z vrubů je dále nutno si uvědomit, že v uvedených výrazích popisujících mezní křivky představují \(\delta \) a \(\varepsilon \) skutečné napětí a skutečnou deformaci respektující koncentraci napětí a deformace vyvolanou existencí vrubů (nikoliv však vrubovým účinkem samotné trhliny). Při dosažení pružně-plastického stavu není určení skutečné deformace jednoduchou záležitostí. Využití některé z experimentálních metod nebo pružně-plastické analýzy metodou konečných prvků nebude asi příliš časté. K tomuto účelu se nabízí příbližná Neuberova metoda výpočtu pružně-plastických deformací (je popsána v 5. kapitole). Její použití (pro materiál s monotoným zákonem zpevnění) je ukázáno v [55].

Pokud působí na trhlinu též reziduální napětí (je-li např. v nezíhaném svarovém spoji), je třeba uvažovat jeho superpozici na napětí od vnějšího zátiší a počítat potom s celkovým napětí
 \[
 \delta_c = k \cdot \delta + \delta_0
 \]

Platnost mezních křivek je omezena podmínkou pro velikost tělesa a trhliny (4.92) a vznikem křehké trhliny (tj. začátkem pomalého subkritického růstu trhli-
ny). O vzrůstu lomové houževnatosti u těles s kratšími trhlinami než požaduje shora uvedená podmínka platí obdobně závěry jako byly formulovány v souvislosti s kriteriem COD [46].

Uvedeným postupem obdržíme kritickou velikost centrální průchozí trhliny v těle řízené stěně. Její přepočet na obvyklejší tvary ekvivalentní trhliny eliptické nebo pololiptické v reálné konstrukci bývá potom založen na rovnosti součinidel intenzity napětí centrální trhliny a ekvivalentní (polo)eliptické trhliny.

4.6 METODA DVOU KRITERIÍ

Tato metoda, označovaná často též jako R 6 (podle výzkumné zprávy [56]oddělení Central Electricity Generating Board), umožňuje posuzování vad v celém rozsahu možného chování konstrukce, tj. od dokonale elastického až do plné plastického stavu. Zahrnuje tedy celou oblast platností LELM a EPLM mezi křehkým a houževnatým lomem. Metoda byla rozpracována pro snadné použití v technické praxi.

Teoretickým základem této metody byla práce, kterou publikovali Dowling a Townley [57]. V ní upozornili na existenci plynulého přechodu mezi mězním stavem křehkého porušení (popisovaným LELM) a mězním stavem tvárného porušení (v jejich terminologii plastickým kolosem) (obr. 51). Odpovídající přechodové stavy je možno v zásadě řešit metodami nelineární lomové mechaniky. Tento postup je však možno nahradit jiným - jednodušším - a to současným použitím těchto dvou shora uvedených kriterií. Jelikož je prokázána dostatečná spolehlivost k těmto oběma mězním kriteriům, bude podle těchto autorů splněn požadavek spolehlivosti i při jejich kombinaci. Při návrhu tohoto přístupu vycházeli z teoretických závěrů formulovaných Healdem se spolupracovníky [58] pro "lomovou mechaniku za hranicemi meze kluzu" (Post Yield Fracture Mechanics). Na základě jednoduchého modelu zde Heald dokazuje, že lomová houževnatost při rovinné deformaci je charakteristickým parametrem lomového procesu i v oblasti za mezi kluzu. Odvodili, že k růstu trhliny dochází při lomovém napětí daném vztahem

$$\sigma = \sigma_{KR} = \frac{2}{\pi} R_m \arccos \frac{\pi K_m^2}{2 R_m^2 a Y_1^2}$$

(4.101)

kde R_m je mez pevnosti. Tato rovnice byla odvozena pro případ průchozí (centrální) trhliny za rovinné deformace. Pod napětím σ je zde chápáno skutečně největší hlavní napětí působící v místě trhliny - nikoliv tedy napětí vypočítané za předpokladu platnosti Hookova zákona.

Zde je uvažován součinitel intenzity napětí ve tvaru

$$K_1 = \sigma \sqrt{\pi a} Y_1$$

(4.102)
Potom dostaneme z uvedených rovnic
\[
\ln \sec \left(\frac{x}{2} \right) = \frac{3}{8} \cdot \frac{S^2}{R_m^2} = \frac{S^2}{R_m^2}
\]

Po zavedení bezrozměrných parametrů
\[
K_r = \frac{K_r}{K_C}, \quad S_r = \frac{S}{R_m}
\]

z toho plyne vztah pro mezni křivku této koncepcí (obr. 52)
\[
K_r = S_r \left[\frac{8}{\pi^2} \ln \sec \left(\frac{x}{2} S_r \right) \right]^{1/2}
\]

Leží-li odpovídající bod na této křivce nebo vně vyšrafované oblasti (jako např. bod C), pak dojde k porušení. Nepříznivé poměry v bodě C je možno zlepšit buď snížením napětí (C 1), připuštěním trhlin menší velikosti (C 2) nebo zvýšením lonové houževnatosti (C 3).

Pro určení parametrů \(K_r \) a \(S_r \) je nutno rozdělit působící napětí do dvou kategorií:
- na napětí \(\sigma^p \), vznikající ze zatížení vyvolávajících plastický kolaps,
- na napětí \(\sigma^s \), která nepříspěvají ke vzniku plastického kolapzu.

Toto klasifikace je věcí určitého názoru. Napětí \(\sigma^p \) jsou vyvolána vnějším zatížením - silami, tlaky, vlastní tichou, interakcí s okolní konstrukcí. Sem jsou též zařazována napětí vyvolaná teplotním nebo jiným deformačním zatížením. Obecně nejsou tato napětí samorovnovázná.

Napětí \(\sigma^s \) vznikají v důsledku existujících teplotních gradientů, působením svařování ap. Tato napětí jsou samorovnovázná (tedy výsledná osova síla a ohybový moment v průřezu jsou nulové).

V této souvislosti je však nutno upozornit na to, že teplotní a zbytková napětí po svařování, která jsou samorovnovázná v celé konstrukci, nemusí být samorovnovázná v průřezu s trhlinou. Takováto napětí potom nejsou nutně klasifikována jako napětí \(\sigma^s \). Jsou-li pochybnosti o kategorii napětí, použije se kategorie \(\sigma^p \).

Podle vztahu (4.104) je parametr \(K_r \) měřítkem toho, jak blízko je u konstrukce nebezpečí křehkého lomu podle LELM. Působí-li pouze zatížení vyvolávající plastický kolaps, platí
\[
K_r = K_r^p = \frac{K_r^p}{K_C}
\]

působí-li i jiná zatížení, je
\[
K_r = K_r^p + K_r^s
\]

kde \(K_r^s \) je určeno pouze pro napětí \(\sigma^s \) a zahrnuje nezbytné korekce s ohledem na plastifikaci.
Parametr S_r je definován jako

$$S_r = \frac{\text{zatížení vyvolávající vznik } S^0}{\text{zatížení při plastickém kolapсу}} \quad (4.108)$$

Zatížení při plastickém kolapсу se zde rozumí zatížení vyvolávající tvárné porušení v "místě" průřezu s trhlinou (tj. v nosně části průřezu oslabené o trhlinu). K jeho určení je možno použít vhodné metody plastické analýzy (zajišťující určení horní mez S_h) nebo obecného postupu uvedeného ve směrnici R 6. Jako mezní napětí v průřezu s trhlinou se uvažuje napětí při tečení materiálu (flow stress) o velikosti

$$\sigma = \frac{1}{2} (R_e + R_m) \quad (4.109)$$

$$K_r = f (L_r) \quad (4.110)$$

kde K_r je uvažováno stejně jako v předchozích vydáních. Nové se zde objevuje parametr L_r definovaný jako

$$L_r = \frac{\text{zatížení vyvolávající vznik } S^0}{\text{zatížení při plastickém skluzu}} \quad (4.111)$$

Uvedené zatížení při plastickém skluzu závisí na mezi kluzu materiálu R_e (mezním napětí je mez kluzu). Z porovnání (4.108) a (4.111) tedy plyne

$$\frac{S_r}{L_r} = \frac{R_e}{\sigma} \quad (4.112)$$

Způsoby stanovení tohoto mezního zatížení pro nejčastěji se vyskytující případy trhlin jsou uvedeny v [65]. Při určování tohoto mezního zatížení musí být uvažováno případné tečení. Při subkritickém růstu tvárným natrižením se za relevantní velikost trhliny považuje trhlinu zvětšená o příslušný nárůst.

Mezní křivka se v tomto 3. revizovaném vydání uvádí ve čtyřech variantách (viz též [64]):

a) varianta 3. (Option 3) je založena přímo na ekvivalenci mezní křivky a analýzy pomocí J-integralu. Výsledkem je závislost

$$K_r = \left(\frac{J_0}{J} \right)^{1/2} \quad (4.113)$$

kde J a J_0 jsou hodnoty J-integralu získané elasto-plastickou a elastickou
analýzou (pro totéž zatížení).

Tato varianta se užívá v případech, kdy je k dispozici hodnota J-integrálu součásti s trhlinou. Ta může být získána buď experimentálně nebo pružně-plasticky analýzou. Teoreticky může být spojovat výsledky s vyšší přesností než je možné při použití mezních křivek z 1. a 2. varianty. Analýza pomocí J-integrálu je též vhodná při řešení specifických případů zatížení i tam, kde se vyskytují problémy s kategorizací určitých druhů zatížení.

b) 2. variantu (Option 2) mezní křivky odvodil Ainsworth [66] ve tvaru

\[K_r = \left(\frac{E \varepsilon_{ref}}{L_r R_o} + \frac{L_r^2 R_o}{2 E \varepsilon_{ref}} \right)^{1/2} \] \hspace{1cm} (4.114)

Zde \(\varepsilon_{ref} \) znamená deformaci získanou ze závislosti skutečné napětí - skutečná deformace pro referenční napětí \(\varepsilon_{ref} = L_r \cdot R_o \). (Poznámka: mezi skutečnou a konvenční deformací platí vzťah: \(\varepsilon_{ref} = \ln (1 + \varepsilon_{kon}) \)).

c) 1. varianta (Option 1) mezní křivky

\[K_r = (1 - 0,14 L_r^4) \left(0,3 + 0,7 \exp (-0,65 L_r^6) \right) \] \hspace{1cm} (4.115)

je empiricky navrženou křivkou vhodně přiléhající k experimentálním výsledkům. Použití této mezní křivky se nabízí především v případech, kdy je k dispozici pouze mezi kluza a mezi pevnost.

Jistou poznamkou je třeba uvést v souvislosti s materiály vykazujícími vodorovnou průduh na dolní mezí kluza. U nich předpovídá křivka 2. variante (4.114) prudký pokles mezních hodnot kolem \(L_r = 1 \). Takovéto chování by ve skutečnosti mohlo odpovídat pouze přípádům s převládajícím tahem, jako je tomu u stěn s centrální trhlinou. Pro tyto materiály může být provedeno konzervativní posouzení při využití 1. varianty (4.115) při ohraničení mezní křivky hodnotou \(L_{r,\text{max}} = 1 \). Pro přednostní použití se ovšem doporučují křivky podle 2. a 3. varianty se skutečnými materiálovými údaji.

Jak je ze shora uvedeného zřejmé, uplatňuje se při využívání mezních křivek v 3. revidovaném vydání R 6 [63] celá řada materiálových charakteristik. Vedle lomové houževnatosti při rovinné deformaci \(K_{IC} \) to jsou smluvní lomová houževnatost (zejštěná při nedodržení podmínek zkoušky na velikost tělesa a trhliny), dále lomová houževnatost po otupením trhliny a jejím nárůstu o 0,2 mm a konečně lomové houževnatosti při jistých velkostech tvarového trhání. Z charakteristik tahuové zkoušky je potřeba mez kluza (dolní mez kluza nebo mez odpovídající 0,2 % trvalé deformační a mez pevnost.

Navržená mezní křivka má tvar

\[S_r = \frac{1-0,1 S_{r}^2 + 0,1 S_{r}^6}{1 + 3 S_{r}^4} \] \hspace{1cm} (4.116)

kde pro použitý parametr \(S_{r} \) je možno využít relace (4.112). Je třeba zdůraznit, že tato mezní křivka je specifická pro C-Mn ocelí a nemůže být použita pro analýzu
konstrukcí z jiných druhů ocelí.

4.7 SUBKRITICKÝ RŮST TRHLINY PŘI JEDNOSMĚRNÉM ZATIŽENÍ

4.71 Mechanismy rozvoje porušení

Doposud uvážené charakteristiky LEIL a EPLM - K_{IC}, C_{f}, J_{IC} - určují podmínky iniciace náhleho křehkého lomu z trhliny jisté velikosti. U ocelí s tranzitním chováním však v závislosti na metalurgických a strukturních parametrech na jedné straně a provozních podmínkách na straně druhé, může dojít k iniciaci lomu též subkritickým růstem (více či méně výrazným). Další šíření lomu pak může probíhat nestabilně (tj. jako náhly křehký lom) nebo stabilně), případně též může dojít k jeho zastavení - to vše podle provozních podmínek a materiálových parametrů.

Může tedy obecně dojít k případům (obr. 54):

1. štěpné iniciace a štěpného (nestabilního) šíření lomu (při zanedbatelném subkritickém růstu),
2. tvárné iniciace, tvárného růstu trhliny a štěpného (nestabilního) šíření lomu,
3. tvárné iniciace, tvárného růstu trhliny a tvárného (stabilního) šíření porušení.

V pásmu I na obr. 54 je do teploty t_0 lomovým kriteriem lomová houževnatost při rovinné deformaci K_{IC}. Při vyšších teplotách - do teploty t_1 - to je např. odpovídající hodnota K_{IC} (získaná přepočtem z J_{IC}). Nad teplotou t_1 dochází k tvárné iniciaci trhliny.

4.72 Iniciace subkritického růstu

Při tvárné iniciaci se podle okolností může u kořene trhliny vyskytnout:

a) malá plastická zóna (oblast LEIL)

b) velká plastická zóna (oblast EPLM)

ad a) Tento proces iniciace a následného růstu je možno popsat R-křivkami (obr. 55) - jak o tom bude podrobněji v kap. 4.73.

- 91 -
ad b) Otázka vzniku subkritického růstu je sledována při zkouškách kritického rozevření trhliny nebo kritické hodnoty J-integrálu. Existence tohoto subkritického růstu je pozorovatelná na lomové ploše i na diagramu zatížení - posuv jeho působení nebo zatížení - rozevření vrvu. Začátek pomalého růstu trhliny je možno po tom stanovit zkušením jednoho nebo více zkušebních těles - příslušná metodika je uvedena v ČSN 42 0347 :47. Opět se tedy určují R-křivky, vyjádřené však tentokrát mejičástější hodnotami J-integrálu, označovanými \(J_{IR} \) (případně přeprůčtenými hodnotami lomové houževnatosti \(K_{CR} \)) - tedy tzv. pseudo R-křivky (obr. 56). Odolnost materiálu proti iniciaci subkritického růstu se pak hodnotí veličinou \(J_{IC1} \), \(J_{IC2} \) nebo odpovídající \(K_{CJ1} \), získanou extrapolací pro nulový tvárný růst trhliny.

4.73 Subkritický růst trhliny

4.731 R - křivky

Častěji jsou prezentovány R-křivky v nichž je odpor proti růstu trhliny vyjádřen hodnotami součinitele intenzity napětí \(K_{R} \) v závislosti na přírůstku délky trhliny. Jako délka trhliny se zde rozumí buď skutečně měřená délka trhliny nebo efektivní délka (t.j. s korekcí na plastickou zónu).

Je třeba zdůraznit, že R-křivka je závislá na tloušťce tělesa. Proto je možné výsledků zjištěných na R-křivkách používat na konstrukcích jen téže tloušťky, jakou měly zkušební vzorky. Nelze tedy z ní odvozovanou lomovou houževnatost povazovat za materiálovou charakteristiku.

4.732 Křivky \(J_{IR} \) (obr. 56)

Vyúžívají se pro popis subkritického růstu v oblasti EPLM. Jsou to vlastně opět R-křivky, avšak vyjádřené J-integrálem. Křivka se získá zatěžováním řady zkušebních vzorců na různou hodnotu přemístění působíště síly, jejich odležením a stanovením velikosti stabilního růstu trhliny \(\Delta Q \). Tato délce trhliny pak odpovídá příslušná hodnota J-integrálu.

Teoreticky byly odvozeny a experimentálně potvrzeny omezující podmínky, za nichž je stabilní růst trhliny řízen J-integrálem a nezávisí na rozměrech tělesa :67:.
- nosná šířka nezloneného průřezu
\[b = W - a > \frac{\omega J}{dJ/da} \]
\[b > \frac{\varphi J}{R_{em}} \quad R_{em} = \frac{1}{2} \left(R_e + R_m \right) \]

maximální velikost růstu trhliny \(\Delta a \leq b \).

Koeficienty \(\omega, \varphi, \alpha \) závisí na druhu materiálu a způsobu namáhání. Tak např. pro reaktorovou ocel A 533 B je [67]: \(\omega = 80(10), \varphi = 200(25 až 50), \alpha = 0,01 \) (0,06) – pro namáhání řahem a ohybem (v závorkách).

4.733 Stabilita subkritického růstu trhliny

Průkaz stabilního růstu trhliny má velký význam pro posouzení spolehlivosti konstrukce. Kriterium, navržené k tomuto účelu Parisem, je založeno na dvou hypotézách [67]:
1. odpor materiálu proti tvárnému prodloužení trhliny při stoupajícím zatišení je správně popsán křivkou \(J_R \),
2. prodloužení trhliny při konstantním zatišení změní hodnotu J-integrálu.

Na obr. 57 je uvedena typická \(J_R \) křivka. Počáteční délka částečné trhliny je \(a_0 \). Proces otupování kořene trhliny (usečka OA – čára otupení – blunting line) je po dosažení lomové houževnatosti \(J_{ICl} \) vystřídán subkritickým růstem. Při určité hodnotě J-integrálu – např. \(J_B \) – je podle křivky odpovídající velikost prodloužení \(a_B \) – \(a_0 \). Uvažujeme nyní působení konstantního zatišení \(F \) – délka trhliny se jeho vlivem zvětší na \(a_B + \Delta a_B \). Tomu odpovídá změna J-integrálu, kterou lze vyjádřit jako

\[J(a_B + \Delta a_B) - J(a_B) = \left(\frac{dJ}{da} \right)_{F \rightarrow \infty} \Delta a_B \]
(4.118)

Hodnotu \(dJ/da \) lze určit pro dané zatišení, geometrii tělesa materiálu – označme ji \((dJ/da)_{app} \). Sklon \(J_R \) křivky charakterizuje odpor materiálu proti růstu trhliny při stoupajícím zatišení – označme jej \((dJ/da)_{mat} \). Růst trhliny bude stabilní, jestliže bude

\[\left(\frac{dJ}{da} \right)_{app} < \left(\frac{dJ}{da} \right)_{mat} \]
(4.119)

K nestabilnímu růstu dojde v opačném případě.

Po zavedení bezrozmezné veličiny, kterou Paris nazval "tearing modulus" – česky "modul pemalého růstu trhliny" (těž plastic ký modul nestability)

\[T = \frac{dJ}{da} \cdot \frac{F}{R_{em}^2} \]
(4.120)

je možno podmínku stabilního růstu trhliny vyjádřit též ve tvaru \(T_{app} < T_{mat} \) .
5. ÚNAVOVÉ PORUŠENÍ SOUČÁSTÍ

5.1 ZÁKLADNÍ POJMY

5.11 Únavová životnost konstrukcí

Zhruba od poloviny tohoto století je možno pozorovat kvalitativní změny v posuzování cyklicky zatáčených konstrukcí porušujících se únavovým lomem. Tak především při určování odevz konstrukce na zatížení se ustupuje od metodiky výpočtu, kdy se dynamické zatížení superponovalo na základní statické zatížení a vyjadřovalo se pomocí různých dynamických součinitelů. Dochází k rozvoji dynamiky tuhých a zejména pružných soustav, pokroku je dosaženo v teorii kmitání lineárních i neliniarých soustav. Pokroky výpočetní techniky vytvářejí předpoklady pro řešení taktových úloh, které byly dříve nemyšlitelné (např. počítačové modelování, optimalizace). Zrychluje se úroveň znalostí o materiálech a jejich využitelných vlastnostech. Začínají se uplatňovat nové názory na pevnostní výpočty. Ukazuje se, že nelze spolehlivě odvodit chování konstrukce při provozním zatížení z únavových zkoušek jednoho nebo několika vzorků při jednostupňovém harmonickém zatížení. Nelze nebrat v úvahu nehomogenitu materiálu, jeho vady a vliv mechanického a tepelného zpracování. To vedlo k tomu, že mez únavy (nebo doba života) je rovněž náhodnou veličinou. Proto se také v novodobých pevnostních výpočtech a při přípravě a analýze výsledků zkoušek využívá teorie stochastických procesů a matematické statistiky. Důležitým poznatkom rovněž je, že proces poškozování materiálu (tedy nevratné změny jeho fyzikálně-mechanických vlastností) není homogenní ani z hlediska rozdělení v objemu součásti, ani z hlediska času. V podstatě jde o řádu na sebe navazujících etap závislých na materiálu a zatěžovacích podmínkách.

Z uvedeného je zřejmé, že zajištění spolehlivosti z hlediska únavové životnosti není úloha jednoduchá, napak je po teoretické i experimentální stránce značně náročná. Na obr. 58 jsou podrobněji konkrétizovány jednotlivé činnosti zahrnující dynamické řešení (se svou teoretickou a experimentální částí), analýzu napětové-deformační odevzdy, predikci životnosti, experimentální ověření životnosti (především v laboratorních podmínkách při simulaci provozního zatížení resp. provozní odevzdy).

Je samozřejmé, že rozsah a míra podrobnosti těchto činností bude různá v závislosti na důležitosti posuzované součásti.

Při tomto únavovém posuzování se mohou vyskytnout tři základní případy (viz též kap. 3.4.2):

a) je požadována nekonečná doba života (v součásti je nesmí se vyskytnout trhliny, etapa růstu trhlin tedy nepřízněvá v úvahu); návrh i výroba musí zajistit konstrukci odolnou proti nukleaci trhliny;
b) připouští se omezena doba života, jsou tedy významné jak etapa nukleace trhliny tak i jejího růstu;
c) vychází se z existence počátečních vad (prostorových i trhlin), takže je třeba uvažovat stabilní růst trhlin. Etapa nukleace je bezpředmětná.

Z uvedeného vyplývají dva základní metodické postupy udávající při hodnocení životnosti
- dobu do iniciace makrotrhlin,
- zbytkovou životnost, tj. dobu potřebnou pro růst trhlin z počáteční na mezní
velikost.

Problematické únavy byla již věnována pozornost v rámci základního studia v předmětech nauka o materiálu, pružnost a pevnost [9], části a mechanismy strojů. V rámci studia specializace Počítačové navrhování strojních soustav byly související otázky též obsahem předmětu Materiálové charakteristiky [1]. V dalším textu tohoto skriptu je bezprostředně navazováno na [1], přičemž jsou zde doplněny a rozšířeny další přístupy a metody - především v problematické růstu trhlin, vlivu vrubů na životnost v oblasti nízkokmitové únavy a posouzení životnosti při proměnné amplitudě zatížení.

5.12 Cháрakteristiky cyklického namáhání

V čase proměnný průběh napětí, mají obecně stochastický charakter, se pro účely únavového posouzení nejčastěji schematizují soubory harmonických kmitů (o příslušných metodách je pojednáno v kap. 5.531). Každý kmit napětí (a obdobně též přetvoření) je možno charakterizovat pomocí (obr. 59):
5.13 Stadia únavového procesu

Proces únavového poškozování je podmíněn a řízen cyklickou plastickou deformací. Toto platí jak pro únavu nízkokmitovou (s vysokými amplitudami plastické deformace), tak i vysokokmitovou (s nízkými amplitudami plastické deformace). I velmi malá, avšak mnohonásobně opakovaná plastická deformace vede ke kumulativnímu poškozování, které může končit únavovým lomen. Celý tento proces je možno rozdělit na tři stadia, která na sebe vzájemně navazují (a současně se poněkud překrývají) (obr. 60):

a) stadium změn mechanických vlastností (viz [1], str. 125),
b) stadium nukleace mikrotrhlin (viz [1], str. 133),
c) stadium růstu trhlin (viz [1], str. 136),
d) konečný lom (viz [1], str. 163).

\[
\begin{align*}
\text{vznik} & \quad \text{ustálené} \\
\text{dilokací} & \quad \text{substrukture} \\
\text{nukleace} & \quad \text{trhlin} \\
\text{růst} & \quad \text{krátkých} \\
\text{trhlin} & \quad \text{růst} \\
\text{makrotrhlin} & \quad \text{konečný} \\
\text{lom} & \quad \text{celková doba života}
\end{align*}
\]

Obr. 60

Problematickou otázkou je určení délky nukleaceho stadia, tedy do jaké velikosti (hloubky, délky) trhlin hovořit o nukleaci a od jaké velikosti o růstu trhliny. Odpovídající situace je naznačena na obr. 61: \(N_0 \) - počet kmitů pro nukleaci trhliny délky \(a_0 \), \(N_t \) - délka stadia změn mechanických vlastností, \(N_S \) - počet kmitů pro nárůst trhliny na délku \(a_0 \), \(N_d \) - počet kmitů pro dosažení kritické délky trhliny \(a_{KR} \) (velikost \(a_{KR} \) se snižuje v průběhu doby života v důsledku degradačních Mechanizmů), \(N_f \) - celková doba života do porušení (tj. do rozložení součásti na dva nebo více dílů). Je třeba konstatovat, že otázka určení hranice mezi etapou nukleace a růstu není dodnes jednoznačně vyřešena -
- užívá se řada konvenčních pravidel - např. křivka kritického poškození podle Frenche, velikost trhliny 0,05 až 0,08 mm (Manson), velikost trhliny plynoucí z prarové hodnoty součinitele intenzity napětí a meze únavy aj.

Pokud se týče vzájemného poměru doby (počtu kmitů) pro nukleaci a růst trhliny je možno uvést pouze jisté kvalitativní údaje. Tak především s rostoucí amplitudou namáhání klesá poměr N_0/N_f; v oblasti vysokokmitové únavy může dosahovat u hladkých vzorků N_0 až desítky procent z N_f; v oblasti nízkokmitové únavy je N_0 vůči N_f prakticky zanedbatelně (tedy prakticky $N_L = N_f$). Shora uvedené poměry jsou však významné ovlivněny koncentrací napětí (vrubky): v případě značných koncentrací (např. v místech apriorních vad typu trhlin) je stadium nukleace zanedbatelné a celková doba života odpovídá prakticky déle etapy růstu trhliny.

Stadium růstu trhlin navazuje plynule na předchozí stadium nukleace, pokud nedochází přímo k růstu apriorní vády typu trhliny (obr. 62). Ne všechny vzniklé mikrotrhliny se musí rozvinout v makrotrhliny a věst k porušení součásti. Rozhodující podmínky pro to jsou podmínky na čele trhliny. Této problematiky si podrobněji všimneme v kap. 5.22. Zde pouze připomeneme, že velmi efektivním nástrojem pro kvantitativní popis růstu trhlin je lomová mechanika: lineární lomová mechanika v případě elastických deformací (zjednodušeně řešeno v oblasti vysokokmitové únavy) a elasto-plastická lomová mechanika v oblasti elastoplastických cyklických deformací (tj. přibližně v oblasti nízkokmitové únavy). Je třeba rovněž brát v úvahu, že používané zákonnosti lomové mechaniky se vztahují na tzv. dlouhé trhliny, čímž se rozumí trhliny větší než cca 1 mm.
5.14 Cyklické deformační vlastnosti

Napěťové deformační odezva materiálu, tj. závislost napětí na celkové (případně pouze na plastické) deformaci je při cyklickém zatěžování charakterizována v průběhu jednoho kmitu hysterezní smyčkou (obr. 63). Tvar i velikost hysterezní smyčky se mění v průběhu zatěžování; většina těchto změn však probíhá především pouze na počátku zatěžování. Po dosažení saturovaného stavu tyto změny buď vůbec ustanou nebo jsou již velmi malé (to platí v nízkou i vysokomnité oblasti). Změny hysterezní smyčky ukazují na změnu odporu materiálu proti cyklické plastické deformaci - ten může vzrůst (potom hovoříme o cyklickém zpevnění) nebo klesat (při cyklickém změkčení).

Obr. 63

U většiny materiálů dochází po určité době cyklického zatěžování ke stabilizaci tvaru a velikosti hysterezních smyček. Proložíme-li vrcholovými body těchto stabilizovaných smyček křivku, dostaneme cyklickou deformační křivku (cyklickou křivku napětí - deformace) (obr. 64). Pro cyklické zatěžování je její důležitost srovnatelná s důležitostí tahového diagramu pro monotonní zatěžování. Cyklická deformační křivka tedy vyjadřuje závislost amplitudy napětí na amplitudě deformace (buď celkové nebo plastické) po saturaci mechanických vlastností. Lze ji aproximovat mocninovou závislostí ve tvaru

\[\sigma_a = K' \cdot \varepsilon_{ap}^{n} \]

\[\varepsilon_{ct} = \varepsilon_{ce} + \varepsilon_{ap} = \frac{\sigma}{E} + \left(\frac{\sigma}{K'}\right)^{1/n} \]

\[\Delta \sigma = 2^{1/n} \cdot K' \cdot \Delta \varepsilon_{ap}^{n} \]

\[\Delta \varepsilon = \frac{\Delta \sigma}{E} + \left(\frac{\Delta \sigma}{2^{1/n} \cdot K'}\right)^{1/n} \]

(5.2)

- 98 -
kde \(K \) je součinitel cyklického zpevnění, \(n \) je exponent cyklického zpevnění. Pro některé materiály jsou jejich hodnoty uvedeny v tab. 2 [73].

\[\begin{array}{|c|c|c|c|}
\hline
& K & n & c \\
\hline
11 423 & 1013 & 0,182 & 1,00 & -0,62 \\
12 010 & 872 & 0,176 & 1,14 & -0,63 \\
12 050 & 1399 & 0,233 & 0,56 & -0,56 \\
13 030 & 1180 & 0,201 & 0,84 & -0,58 \\
14 331,6 & 1442 & 0,108 & 0,39 & -0,56 \\
15 128,5 & 932 & 0,151 & 0,53 & -0,57 \\
15 313,5 & 922 & 0,158 & 0,47 & -0,53 \\
16 333 & 977 & 0,083 & 2,17 & -0,78 \\
\hline
\end{array} \]

5.2 RŮST ÚNAVOVÝCH TRHLIN

5.21 Mechanismus růstu a zastavení trhlin

V dnešní době se již považuje za obecně platnou skutečnost, že reálné konstrukce obsahují vždy ostré vady nebo přímo trhliny. To se týká především svařovaných konstrukcí (kde se vyskytují neprůhony a trhliny vzniklé v průběhu svařování v důsledku nevhodného teplotního režimu nebo po svařování v důsledku vysokých zbytkových prutů) a odlitků (kde mimořádně důlit trhliny v místech ostrých přechodů). Vedle toho může dojít ke vzniku trhlin na provozu a to vlivem cyklického namáhání, korozí pod napětím nebo cree-

dem.

Pro konstrukční praxi tedy vystupují do popředí úkoly:
- volit materiál z hlediska jeho odolnosti proti iniciaci a růstu trhlin,
- posoudit možnost připuštění existujících vad pro trvalou nebo požadovanou dobu života,
- posoudit zbytkovou životnost v případě růstu trhlin.

Zatím není zpracována komplexní teorie vzniku a růstu trhlin v kovových mate-
riálech a konstrukcích. Z hlediska technických aplikací je především důležitá
možnost popisu chování již existující trhliny v konstrukci, podrobené různému
provoznímu zatížení za různých provozních podmínek. To je náplň komplexních
mekanik (viz kap. 4).

Z rozboru obsáhlých experimentů vyplývá, že rychlost růstu únavových trhlin
i podmínky jejich zastavení jsou určovány celou řadou faktorů jako jsou délka trhliny, velikost rozšiření napětí a jeho asymetrie, velikost a tvar tělesa, mate-
riálové vlastnosti, provozní podmínky aj. Veličinou, umožňující komplexní vysti-
žení těchto různorodých faktorů, se ukázal být rozkmit (příp. amplituda) součini-
tele intenzity napětí - za podmínek vzniku plastické zóny malé velikosti v porovná-
ní s délkou trhliny a velikostí tělesa (analogicky k (4.10)): - 99 -
\[\Delta K = \Delta \sigma \sqrt{\pi a} \cdot \gamma \]

Potom bylo možno celé rozpětí rychlostí růstu rozdělit na tři oblasti (obr. 65):

A - nízké rychlosti růstu; křivka se asymptoticky blíží pravé hodnotě, kdy růst trhliny není pozorovatelný (je řádu cca \(10^{-7}\) až \(10^{-8}\) mm/kmit);

B - střední rychlosti růstu; příslušná závislost je v log - log souřadnicové soustavě lineární;

C - vysoké rychlosti růstu; rychlost se asymptoticky blíží neznámé hodnotě, kterou může být únavová homolová houževnatost \(K_{\text{fc}}\) (pokud probíhá cyklické zatěžování za snížených a nízkých teplot, kdy je reálné nebezepečí vzniku křehkého lomu). Dosud však neexistuje jednotná metodika pro její stanovení; jako konzervativní odhad její velikosti je možno užít dynamickou homolovou houževnatost.

Z hlediska praktického využití přichází v úvahu pouze oblasti A, B.

5.22 Příznaky zastavení trhlin

Trhlna při cyklickém zatěžování neporoste, jestliže rozkmit sousední patrně napětí nepřekročí svou pravou hodnotu. Při určování této hodnoty je nutno rozlišovat dva základní případy.

Nejsou-li v oblasti čela trhlin žádná reziduální pnutí (byla-li odstraněna dokonalým čištěním) pak je možno při postupně se zvyšujícím \(\Delta K\) najít jeho hodnotu při níž dojde k růstu trhliny. Na základě pravých hodnot rozkmit sousedního napětí \(\Delta K_{p2}\) je možno ji považovat za materiálovou konstantu (pro danou asymetrii kmitu).

Jiná je situace, jestliže v oblasti čela trhlin (v její plastické zóně) patří reziduální pnutí vyvolané předchozím zatěžováním a odpovídajícím rozkmitem \(\Delta K\). Jestliže se nyní při zkoušce opět postupně zvyšuje \(\Delta K\) od velmi nízkých hodnot, pak k počátku růstu dojde při \(\Delta K_{p2}\); v této hodnotě se však vedle vlastního odporu materiálu proti růstu trhliny promítá též vliv reziduálních tlakových pnutí na čele trhliny. Z experimentálně stanovené závislosti plyne

\[\Delta K_{p2} = \Delta K_{c3} \frac{1 - \omega}{\omega} \Delta K^{\omega} \]

Prahová hodnota je mimořádně silně závislá na struktuře a mikrostrukturu materiálu. Byly prokázány její poměrně dobré korelace s mezi klužku [76]:

\[(\Delta K_{pz})_{r,c} = 1,4 - 0,0046 \, R_e \]

[MPa · m^{1/2}]

(pro \(R_e \) v MPa) s 95% konfidenčním intervalem \(\pm 1,19 \) MPa \(m^{1/2} \).

- 100 -
Vliv asymetrií kmitu je velmi výrazný (obr. 66). Obecně platí, že s rostoucím tahovým předpětím klesá prahová hodnota. Lze to vyjádřit empirickými vztahy

\[(\Delta K_{p2})_t - (\Delta K_{p2})_t = 0 (1 - r)^k\]

nebo

\[(\Delta K_{p2})_t - (\Delta K_{p2})_t = r (10,39 - 0,0052 R_s)\]

První výraz je podle [77] (pro několik ocelí třídy I2 bylo θ = 0,71), druhý je z [76]. Dále je podle britského předpisu pro posuzování vad ve svarech [27] jsou na obr. 67.

Krátké trhliny (kratší než cca 0,5 - 1 mm) mají nižší prahové hodnoty (viz kap. 5.27).

5.23 Růst trhliny při elastickém namáhání

Pro oblast středních rychlostí růstu se nejvíce používá Paris Erdoganovy empirické rovnice

\[\frac{da}{dN} = C (\Delta K)^n\]

v níz C, m jsou materiálové konstanty vztahující se k danému součiniteli asymetrie kmitu r (resp. P).

Jak je těž zřejmé z obr. 66 vzrůstá rychlost růstu trhliny se zvyšujícím se součinitelem asymetrie kmitu r.

Tuto skutečnost je možno vyjádřit empirickým výrazem [76]

\[\frac{da}{dN} = C (\Delta K + B r)^n\]

kde \(B = 10,39 - 0,0052 R_s\)

přičemž C, m se nyní vztahují k \(r = 0\).

Zjednodušeně je možno vliv asymetrií uvažovat tak, že při stanovení \(\Delta K\) potřebného v (5.6) se uvažuje pouze kladná část kmitu napětí [27]. Podle tohoto předpisu se uvažují konstanty vhodné pro ferritické oceli: \(m = 4, C = 7,4, 10^{-13}\) (pro spolehlivost 97,5 %) \(C = 1,7, 10^{-12}\) (pro spolehlivost 99,9 %) přičemž \(\Delta K\) je v MPa.m^1/2 a \(da/dN\) v m/kmit. Tyto závislosti jsou znázorněny na obr. 68 spolu s průběhy podle ASME XI [26] pro trhlinu na vzduchu a ve vodě.

Pro praktické účely je těž důležité vyjádření rychlostí růstu v oblasti A. Zde je možno užít [77]
\[
\frac{da}{dN} = C (\Delta K^m - \Delta K^m_0) = C (\Delta K^m - \Delta K^m_{\text{ref}} \Delta K^m_{\text{op}})
\]

(5.9)

kde byla respektována prahová podmínka z (5.3). Pro oblast B, kde je možno zanedbat druhý člen v závorce, se pak tento vztah redukuje na (5.6). Vliv asymetrií kmitu je možné zde zahrnout uvážením (5.7), tedy náhradou \(\Delta K \) součtem \(\Delta K + Br \). Přehled vlivu některých vnějších a vnitřních faktorů na růst únavových trhlin je uveden v [1], str. 144. Doplňme jej zde pouze poznamkou o rychlosti růstu trhlin ve svarových spojích.

Většinou je rychlost růstu trhlin ve svarovém kovu a těžkém ovlivněné oblasti stejná nebo menší než v základním materiálu. Jsou však i výjimky, kdy trhlna roste rychleji ve spoji než v základním materiálu (zřejmě je při tom v oblasti tahuových reziduálních napětí).

5.24 Žkovisky růstu únavových trhlin

K tomuto účelu se užívá vzorků různých tvarů (obr. 69). Vzorky a–d se užívá nejčastěji; součinitel intenzity napětí u nich závisí na napětí a délce trhliny.

U speciálních tvarů vzorků (e, f) nezávisí součinitel intenzity napětí na délce trhliny, ale pouze na zatížení. Snadno se u nich dosahuje vysokého stupně přesnosti v měření rychlosti růstu trhliny, snadno se detekují i nevýrazné vlivy prostředí.

Při obvyklém postupu se nejprve inicuje trhlna a něčeho se narůst na velikost, kdy již není ovlivňována kořenem vruhu. Další zatížování (u vzorků a–d) probíhá většinou při
konstantním rozkmitu napětí. V průběhu zatěžování se měří délka trhliny v závislosti na počtu proběhlých kmitů. K měření se užívá optických mikroskopů s mikrometrickým šroubem nebo některé z nepřímých metod (potenciometrické, magnetické, ultrazvuku, měření poddajnosti aj.). Derivací této křivky se získá závislost $d/aN - a$, a z toho závislost $da/dN = \Delta K$.

5.25 Růst trhliny při proměnné amplitudě namáhání

Provozní namáhání má v naprosto převažujícím počtu případů proměnnou amplitudu. K výpočtu růstu trhliny je v těchto případech možno přistupovat různými způsoby.

Podle jedné z metod se určují přírůstky délky trhliny v jednotlivých po sobě následujících kmitech a tyto přírůstky se sečítají.

Jinou možnost nabízí využití Minerovy hypotézy pro určení ekvivalentního rozkmitu napětí ΔS^m, vylivolajícího stejné poškození jako rozkmity ΔS_i s četnostmi výskytu n_i:

$$\Delta S^m = \sum n_i = \Delta S^m_i - \left(\frac{\sum n_i \Delta S^m_i}{\sum n_i} \right)^{1/m}$$ (5.10)

Uvedené dva způsoby však neberou v úvahu přechodové jevy k nimž dochází bezprostředně po změně zatěžovacích podmínek. Pro vystižení těchto jevů byla navržena řada modelů, podle nichž určujícím je např. proces otevírání a zavírání trhlin (Elber), existence plastické zóny u kožené trhliny (Wheeler, Willenberg, Lukáš - Klesnil) aj. (viz též [1], str. 145). Jejich běžné praktické využití je limitováno nedostupností dalších nezbytných speciálních materiálových charakteristik.

5.26 Růst unavových trhlin při elasto-plastických deformacích

Jeden ze způsobů, jak popsat chování trhlin při zatížení za vzniku elasto-plastických deformací, spočíval v náhradě rozkmitu napětí v základním vztahu (5.3) součinem modulu pružnosti E a rozkmitu celkové deformace $\Delta \varepsilon$, v místě čela trhliny:

$$\Delta K = E \cdot \Delta \varepsilon_i \sqrt{\frac{\kappa}{A}}$$ (5.11)

Velikost této lokální deformace je možno určit metodou konečných prvků; pro tento účel však vyhoví i některá z metod popsaných v kap. 5.43.

Jinou metodou, která se v posledních letech začíná pro tyto účely úspěšně prosazovat, je metoda J-integrálu. S jejím využitím lze rychlost růstu trhliny popsat výrazem

$$\frac{da}{dN} = v_0 \left(\frac{\Delta J}{\Delta J_0} \right)^r$$ (5.12)

kde ΔJ je referenční rychlost růstu, ΔJ_0 a r parametry daného materiálu, ΔJ je rozkmit J-integrálu (viz kap. 4.5).

Srovnání výsledků zkoušek růstu provedených nezávisle v elastičké a elasto-plastické oblasti je na obr. 70. Jak je zřejmé, navazují na sebe obě oblasti, přičemž jejich exponenty se v daném případě příliš neliší od exponenCU určeného z celého rozměru. Z rozboru vyplnilo, že parametry charakterizující růst trhlin je možno odhadnout z parametrů charakterizujících nízkokmitovou unávovou životnost [78].

- 103 -
5.27 Problematika krátkých trhlin

Pod pojmem krátká trhlna je možno si před-
stavit trhlinu menší než je velikost zrnna nebo
srovnatelnou s velikostí plastické zóny. V těch-
to případech již není použitelná lineární lomová
mekanika. Za spodní mez velikosti trhlin pro
její využití je možno uvažovat trhlinu o velikos-
ti 0,5 až 1 mm.

Chování krátkých trhlin se značně liší od
chování dlouhých trhlin. Usuzuje-li se na veli-
kost rychlosti růstu s využitím vztahu (5.3) pro
vypočet součinitele intenzity napětí, pak se pře-
devším zjišťuje, že krátké trhliny rostou (při
nízkých ΔK) mnohem rychleji než dlouhé (obr. 71
a rovněž obr. 62). Při zvyšování ΔK se pak rych-
lost růstu snižuje na minimum (bod B), potom se
zvyšuje a případně vyrovnává s rychlostí dlouhé
trhliny (bod C). Je-li rozkmit působícího napětí
dostatečně nízký, pak může krátká trhlna růst
se snižující se rychlostí a případně se zastavit
(křivka A' - B'). Přítom je zřejmé, že krátké trhliny
rostou pod základní prahovou hodnotou součinitele
intenzity napětí charakteristickou pro dlouhé

Jedna z teorií se snaží uvedené jevy analyt-
icky popsat s využitím rozkmitu efektivního
součinitele intenzity napětí $\Delta K_{ef} = K_h - K_z$, kde
K_h je součinitel intenzity napětí odpovídající hornímu napětí kmitu, K_z pak odpo-
vidá poměrům při zavírání trhliny. Přitom K_z malých trhlin vzrůstá se zvětšující
se velikostí trhliny. Při nízkých napětích se K_z blíží k prahové hodnotě a
růst trhliny se zastavuje. Při uvažování zavírání trhliny je možno rychlost růstu
krátkých i dlouhých trhlin popsat společnou křivkou.

Z hlediska inženýrského využití je vhodnější přístup, který navrhl El
Haddad aj. [79]. Pro rozkmit součinitel intenzity napětí krátkých trhlin navrhli
vyraz

$$\Delta K = \Delta \delta \sqrt{\frac{1}{1 + a_c}}$$

(5.13)

kde a_c odpovídá trhlině, která dosahuje prahové hodnoty součinitele intenzity
napětí při namáhání na mezí únavy. S využitím (5.13) se pak předpokládána rychlost
růstu krátkých trhlin prakticky ztotožňuje s rychlostí naměřenou u dlouhých trhlin.

Pro zastavení trhliny analogicky k (5.13) platí (obr. 72a)

$$\Delta K_{oz} = \Delta \delta_p \sqrt{\frac{1}{1 + a_c}}$$

(5.14)

přičemž ΔK_{oz} je stejně pro krátké i dlouhé trhliny (obr. 72b). Rovněž u vztahu
(5.14) byla prokázána jeho dobrá shoda s výsledky experimentů. Pro dlouhé trhliny,
kdy $a \gg a_c$, je potom podmínka zastavení

$$\Delta K_{oz} = \Delta \delta_p \sqrt{\frac{1}{a}}$$

(5.15)
5.3 KŘIVKY ŽIVOTNOSTI

5.3.1 Ovod

Od dob prvních experimentů Augusta Wöhlera (1852-1869) se těměř výhradně vyjádřovala řadová životnost ve tvaru závislosti napětí (jeho amplituda, rozsah, nebo horní napětí) - počet kmitů do porušení (do vzniku makroskopické, viditelné thriliny nebo do lomu). To souviselo s experimentální technikou, která byla k dispozici: u klasicchích pulzátorů bylo možné pouze řízení silou, zkoušky tedy probíhaly při tzv. měkkém zatěžování. Takto získané závislosti odpovídaly oblasti vysokekmitové únavy.

Počátkem padesátých let, v době kdy začínal intenzivně vzrůst zájem o problematiku nízkokmitové únavy, se začíná vyjádřovat životnost též ve tvaru Manson-Coffinových křivek (tj. jako závislost amplitudy nebo rozsahu plastické deformace na počtu kmitů do porušení).

Z uvedeného by mohl vzniknout zkratovaný názor, že nízkokmitová oblast je oblastí "deformační" únavy (s nenulovou cyklickou plastickou deformací) a vysokekmitová oblast je oblastí "napěťové" únavy (bez cyklické plastické deformace). Tato představa by byla chybná. Díky rozvoji měřicí a zkušební techniky bylo možno uskutečnit zkoušky s řízenou amplitudou plastické deformace i v oblasti vysokekmitové únavy. Ukázalo se, že takto získaná závislosti v obou oblastech se na sebe navazují. Bylo též zjištěno, že existuje jistá hodnota amplitudy plastické deformace, pod kterou nedojde k únavovému lomu.

5.3.2 Křivky životnosti při měkkém zatěžování

Pro approximaci výsledků zkoušek, uskutečněných za stejnéch podmínek, (tj. stejným středním napětím nebo součinitelem nesouměrnosti kmitu) byla navržena celá řada závislostí. Všechny tyto funkce představují buď a) lineární aproximaci v logaritmicko-lineární nebo v log-log souřadnicové soustavě která přechází v horizontální přímkou na mezí únavy, nebo b) hyperbolické funkce případně funkce tvaru

- 105 -
písmene S, které se blíží mezi únavy a případně též mezi pevnosti. Uvedeme zde pouze dva výrazy, které publikovali

\[
\begin{align*}
\text{Basquin (1910)} & \quad \log N = a - b \log \sigma_c \\
\text{Weibull (1949)} & \quad \log (N + d) = a - b \log (\sigma_a - \sigma_c)
\end{align*}
\]

(5.16)

\[
\begin{align*}
\sigma_m &= 0\\
\sigma_N &= \sigma_c \cdot N = \text{konst}
\end{align*}
\]

(5.17)

\[
\begin{align*}
\sigma_{AN} &= \text{konst} \\
N &= 6^m_1 \cdot N = \text{konst}
\end{align*}
\]

V oblasti vysokokmitové únavy popisuje Basquinův výraz oblast časované pevnosti (obr. 73); s označením součinitel na obrázku je

pro \(\sigma_m = 0 \)

\[
\sigma_N = \sigma_c \cdot N = \text{konst}
\]

(5.17)

pro \(\sigma_N = \text{konst} \neq 0 \)

\[
\sigma_{AN} = \text{konst} \\
N = 6^m_1 \cdot N = \text{konst}
\]

Zde jsou \(\sigma_c, \sigma_A \) mezní výkmity (mezní amplitudy) napětí, při nichž (za dané konstantní hodnoty středního napětí nebo součinitel nezpevněnosti kmitu) vydělí zkušební týc počet kmitů \(N_c \), zvolený za základ zkoušky (pro ocel je \(N_c = 10^7 \) kmitů). Obdobně jsou \(\sigma_N, \sigma_{AN} \) mezní výkmity (mezní amplitudy) napětí na mezi časované únavy; zkušební týc vykazuje (při konstantním \(\sigma_m \) nebo \(\tau \)) život \(N \) kmitů.

V některých přepisech a normách (zahraničních i v naší ČSN 73 6205) se i v oblasti počtu kmitů \(N > N_0 \) respektuje stálý pokles únavové únosnosti zavedením skloněné polopřímky s exponentem \(w > m \).

V oblasti nízkokmitové únavy bývá (5.16) modifikováno do tvaru

\[
\sigma_g' = (2N_1)^b
\]

(5.18)

kde \(\sigma_g' \) je součinitel únavové pevnosti (je dána extrapolaci křivky životnosti do bodu s \(2N_1 = 1 \)), \(b \) je exponent únavové pevnosti. Součinitel \(\sigma_g' \) se vztahuje k locevánu napětí \(\sigma \), při jednoměrném zatření; přibližně platí \(\sigma_g' = \sigma_g \). Exponent \(b \) se pohybuje v mezích od \(-0.05 \) do \(-0.12 \). Vztah (5.18) platí pouze pro cyklicky stabilní materiály.

Výsledky experimentů ukazují, že střední napětí ovlivňuje celý únavový pro-
ces; kladné střední napětí zkračuje stadiun nukleace a urychluje i řást činové trhliny. Vyjádření tohoto vlivu však zůstává stále pouze empirické. Základem pro to je vyjádření křivek životnosti při různých středních napětech \(\sigma_m \), jimiž též odpovídají různé expONENTY \(m \) (obr. 74). V rovinných rovnoběžných s rovinou \(\sigma_n = \sigma_m \) jsou znázorněny Haighovy diagramy s expONENTY \(h \) pro různé počty kmitů \(N \). Je-li známa mezi pevností \(R_m \) a souřadnicí dvou bodů - např. \(\left(\sigma_{m1}, \sigma_{m2}, N_k \right) \) a \(\left(\sigma_{m'}, \sigma_{m''}, N_{k'} \right) \), je možno získat interpolaci potřebné údaje pro jakékoli libovolné poměry.

Pokud nejsou tyto údaje k dispozici, je možno předpokládat \(h = \text{konst.} \) a tedy (pro časovanou resp. trvalou pevnost) pak dostaneme různé tvary Haighových diagramů (pro trvalou pevnost jsou na obr. 75).

I - podle sovětských podkladů;

\[
\sigma_F = \frac{\sigma_c}{\psi}; \quad \text{kde}
\]

\[
\psi = 0 \Leftrightarrow 0,25 \text{ v závislosti na mezí pevnosti. Tedy}
\]

\[
\frac{\sigma_A}{\sigma_B} = 1 - \frac{\psi \sigma_m}{\sigma_c}
\]

\[
\frac{\sigma_A}{\sigma_c} = 1 - \frac{\psi \sigma_m}{\sigma_c} \quad (5.19)
\]

II - podle Goodmana

\[
\frac{\sigma_A}{\sigma_B} = 1 - \frac{\sigma_m}{R_m} \quad \frac{\sigma_A}{\sigma_c} = 1 - \frac{\sigma_m}{R_m} \quad (5.20)
\]

III - podle Gerbera

\[
\frac{\sigma_A}{\sigma_B} = 1 - \left(\frac{\sigma_m}{R_m} \right)^2 \quad \frac{\sigma_A}{\sigma_c} = 1 - \left(\frac{\sigma_m}{R_m} \right)^2 \quad (5.21)
\]

Uvedené vztahy se ještě doplňují mezní podmínkou vzniku plastických deformací \(\sigma_A + \sigma_m = R_e \) (obr. 75 úsečkou IV):

Analogicky k (5.18) se v oblasti nízkokmitové únavy užívá (podle Landgrafta)

\[
\sigma_1 = (\sigma_1', - \sigma_m')(2N_1)^b \quad (5.22)
\]

Vedle uvedených Haighových diagramů se vliv asymetrie kmitu též znázorňuje diagramy Smithovými \((\sigma_h - \sigma_m) \) a Wayrauchovými \((\sigma_h' - \sigma_m') \).
Vlivem vlastností materiálu a zkušebních podmínek mají experimentální výsledky únavových zkoušek jistý rozptyl. Proto vynořování pouhých středních hodnot, např. regresní analýzou v oblasti časované pevnosti, je nedostačující. Je třeba vyšetřit závislosti ε_2 - N - P, kde přístupuje P, vyjadřující pravděpodobnost pěškit (pravděpodobnost, že při daném namáhání nedojde k porušení po N kmitcích) (obr. 76).

Doplníková pravděpodobnost $R = 1 - P$ (resp. $R = 100\%$) udává pravděpodobnost porušení.

U svařovaných spojů se začala užívat prezentace výsledků ve tvaru normovaných křivky životnosti (obr. 77) s tolerančními mezemi pro různé pravděpodobnost porušení.

5.33 Křivky životnosti při tvrdém zatáčování

Manson zjistil (1953), že závislost mezi počtem kmitů do porušení a rozkmitem plastické deformace lze dobře aproximovat závislostí $\Delta \varepsilon_p = M \cdot N_f^z$, kde M, z jsou materiálové konstanty. Coffin později navrhl brát $z = 0,5$ pro všechny kovové materiály. Z porovnání cyklického zatáčení v první čtvrtině kmitu ($N_f = 1/4$) s tahovou zkouškou, kdy je možno uvažovat $\Delta \varepsilon_p = \varepsilon_t = \logaritrická$ (skutečná) tažnost, plyne $M = \varepsilon_t/2$ a tedy

$$\Delta \varepsilon_p = \frac{\varepsilon_t}{2N_f}, \quad \varepsilon_\infty = \frac{\varepsilon_t}{4\sqrt{N_f}},$$

$$\varepsilon_t = \ln \frac{100}{100 - Z}$$

kde Z je kontrakce [%].

Rovněž závislost mezi počtem kmitů do porušení a rozkmitem plastické deformace se ukázala být dobře aproximovatelnou pomocí přímky v log-log souřadnicové soustavě.

Tyto souvislosti se dnes nejčastěji vyjad-
kde ε' je součinitel únavové tažnosti (bývá $(0,35 - 0,5) \varepsilon_t$), c je exponent únavové tažnosti (c, $\varepsilon_t = 0,6$). Konkrétní výsledky zkoušek celé řady čs. ocelí jsou dostupné v katalogech Výzkumného ústavu zváračského (VÚZ) a Výzkumného ústavu hutníctví železa (VÚH).

Při transznítním počtu kmitů $N = \frac{1}{2} \left(\frac{\sigma'}{E} \right)^{\frac{1}{c-b}}$ jsou si elastická a plastická složka deformačě sobě rovně; z (5.24) pak je

$$N = \frac{1}{2} \left(\frac{\sigma'}{E} \right)^{\frac{1}{c-b}}$$ (5.25)

Z porovnání (5.2) a (5.24) je výplň významu souvislosti mezi konstantami cyklické deformační křivky a křivky životnosti

$$n' = \frac{b}{c} \quad K' = \frac{1}{\varepsilon_t} \left(\varepsilon'' \right)$$ (5.26)

Z celé řady pokusů o vyjádření relací mezi charakteristikami získanými při monotónním a cyklickém zatěžování je možno za jeden z nejvýznamnějších uvést Hansenovu metodou univerzálních směrnic

$$\Delta \varepsilon_e = \Delta \varepsilon_a + \Delta \varepsilon_p = 3,5 \frac{R_m}{E} N_t \varepsilon'' + \varepsilon'' N_t \varepsilon''$$ (5.27)

Při dimenzování uzlů tlakových nádob se v amerických předpisích (ASME Code III a VIII) začal používat pojem fiktivního napětí a křivka životnosti, kterou navrhla Langer

$$\sigma''_{0e} = E \varepsilon_{0e} = E (\varepsilon_{op} + \varepsilon_{oe}) = \frac{E \varepsilon''}{420} N_t$$ (5.28)

Odhad parametrů křivky životnosti je možný též pomocí závislosti v (81). Při vyjadřování vlivu asymetrie kmitu se předpokládá cyklicky stabilní materiál.

Jeden z nejčastěji užívaných návrhů je založen na dvou, že pro kmit se střední deformací ε_m je (analogicky k (5.23) platnému pro $\varepsilon_m = 0$)

$$4 \varepsilon_{op} \sqrt{N} = \varepsilon_t - \varepsilon_m$$

tedy k dispozici pro cyklické zatěžování je logaritmická tažnost snížená o střední deformaci kmitu. Z toho po úpravě

$$\varepsilon_{op} = \frac{\varepsilon_t}{\sqrt{N} + \frac{1}{\varepsilon_m + \varepsilon_t}} \quad kde \quad \frac{\varepsilon}{\varepsilon_m} = $$

$$= \frac{\varepsilon_t - \varepsilon_{op}}{\varepsilon_m + \varepsilon_t}$$ (5.29)

Po vyčíslení vztahu (5.29) je však zřejmé, že vliv střední deformace je pro $N_t > 1000$ prakticky zanedbatelný.

Vliv středního napětí bývá rovně uvažován různě. Tak podle Landgrafa se uvažuje (analogicky k (5.24) a (5.22) je)

$$\varepsilon_{op} = \varepsilon_t \left(2 N_t \right)^{\frac{1}{2}} + \left(\sigma''_v - \sigma''_m \right) \left(2 N_t \right)^{\frac{1}{2}}$$ (5.30)

Jeden z obecnějších přístupů pro hodnocení asymetrie kmitu napětí a deformace navrhl Smith. Je založen na představě rovnocenného vlivu cyklického napětí a deformace na únavové porušení, podle níž

$$\left(\sigma''_v - \varepsilon_t \cdot E \right)^{\frac{1}{2}} = \left(\sigma''_v - \varepsilon_t \cdot E \right)^{\frac{1}{2}}$$ (5.31)

Pro kmity s různou asymetrií tedy platí jediná křivka životnosti.
5.41 Úvod

V reálných součástech můžeme pouze zřídit předpokládat rovnoměrně rozložená napětí a deformace po jejich průřezu. V důsledku tvarových změn (konstrukčních vrubů) v nich dochází k lokálním zvýšením napětí a deformace, často vedoucím (při cyklickém zatěžování) ke vzniku únavového porušení. Proto je otázce hodnocení únavové pevnosti vrubovaných součástí věnována značná pozornost již několik desítek let. Je však třeba konstatovat, že se dosud nedospělo k obecným závěrům postihujícím komplexní celou problematiku.

Nejvíce výsledků řešení je k dispozici z oblasti trvalé pevnosti. Rozsah střídavých plastických deformací je zde v kořenech vrubů poměrně malý, takže lze užít pro výpočet koncentrace napětí elastického řešení.

V oblasti nízkokmitové únavy jsou uvedené problémy ještě více zdůrazněny.

při posuzování vlivu

vrubů na únavovou pevnost a

životnost se užívají v podsta-
tě dvě koncepce (obr. 79):

(a) na únavovou životnost součásti s vrubem se usuzuje na
základě výsledků experimentů
se zkušebními týčemi se stejně
nými (nebo velmi podobnými)

vrubů. Tento postup je běžný

v oblasti nízkokmitové únavy.

(b) doba života součásti s vrubem je stejná jako hladké

Zkušební tyče za podmínky

rovnosti lokálních napětí nebo deformací v kořeni vrubu a na povrchu hladké tyče. Využívání této koncepce je typické v oblasti nízkokmitové únavy (to však neznámé, že není využitelná i v oblasti nízkokmitové únavy). Je zde tedy nutné vyšetřování (na rozdíl od předchozí koncepce) napěťové deformacních poměrů v kořeni vrubu; proto je v dalším textu tato koncepce nazývána koncepcí lokálních napětí a
deformací.

Obě uvedené koncepce se vztahují k etapě iniciace mikrotrhliny. Růst této trhliny podléhá zákonnitostem lomové mechaniky.

5.42 Koncepce nominálních napětí

5.421 Koncentrace napětí a deformace v elastické oblasti

Onavové trhliny se v naprosto převažujícím počtu případů iniciují na povrchu součástí, kde také napětí a deformace dosahují svých maximálních hodnot. Lokální zvýšení napětí a deformací je v elastické oblasti definováno součinitelem tvaru \[\alpha = \frac{\sigma_{\text{max}}}{\sigma_{\text{nom}}} \], kde \(\sigma_{\text{max}} \) je největší napětí v místě koncentrace, \(\sigma_{\text{nom}} \) je nominální napětí (tj. napětí vypočtené pomocí základních vzorců nauky pružnosti a pevnosti bez uvažování koncentrace napětí a reziduálních prutů) (obr. 80).

Klasickou prací, věnovanou problematice vrubů, je Neuberova kniha [82], v níž jsou odvozovány výrazy pro součinitele tvaru nejběžnějších vrubů. Vede toho je k dispozici celá řada příruček a pomůcek (např. [83] - [85]), shrnujících výsledky čtených analýtických, numerických i experimentálních řešení. Dnes má v této oblasti důležitou úlohu MKP.

Ve shora uvedeném pojetí se součinitel tvaru vztahuje k hlavním napětím, obvykle k největšímu hlavnímu napětí. V případě víceosou napjatosti (jako je např. pod povrchem v místě obvodové drážky hřídele) vystihuje však lépe podmínky redukovaný součinitel tvaru \[\alpha_{\text{red}} = \frac{[\sigma_{\text{max}}]_{\text{red}}}{\sigma_{\text{nom}}} = \gamma \cdot \alpha_{1} \]

\[\sigma_{\text{red}} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} - \sigma_{1} \sigma_{2} - \sigma_{1} \sigma_{3} - \sigma_{2} \sigma_{3}} = \sigma_{1} \cdot \gamma \] (5.32)

\[\gamma \] součinitel napjatosti

(způsob určení \(\sigma_{\text{red}} \) však nemusí být omezen pouze na hypotézu HMM).

Vedle velikosti špičky napětí je důležitý těž pokles napětí z místa maxima - tedy gradient napětí. Obecně je dán tangentou ke špičce napětí v uvažovaném bodě. Jeho největší hodnota je na povrchu vrubu (obr. 80):

\[G = \tan \gamma = \frac{\{ d \sigma \}}{d x} \mid_{x=\gamma} \]

Pro praktické využití je účelnější poměrný gradient napětí

- 111 -
\[
\bar{G} = G / \bar{\sigma}_{\text{max}} = [\frac{dG}{dx}]_{x=0} / \bar{\sigma}_{\text{max}} \tag{5.33}
\]

U tvarově komplikovaných součástí dochází často k vzájemnému ovlivňování blízkých vrubů. Jestliže vrub "1" zvyšuje napětí v rozsáhlé oblasti, v níž těž leží vrub "2", pak výsledný součinitel tvaru je \(\alpha = (\alpha - 1) \alpha + 1 \) (tedy zvýšené napětí v rubu "1" je nominálním napětím pro vrub "2")

Shora uvedené úvahy se týkaly vlivu vrubu na velikost rozdělení napětí po průřezu součásti. Vliv vrubu na velikost meze únavy – ať již v oblasti trvalého nebo časovaného napětí – je však ponekud komplikovanější; tento vliv závisí na řadě faktorů, jako jsou:
- redukovaný součinitel tvaru (tedy lokální zvýšení největšího hlavního napětí),
- stav napjatosti v průřezu součásti (je vyjádřen součinitelem napjatosti),
- vlastnosti povrchové vrstvy (viz [11], str. 157),
- velikost součásti,
- druh a vlastnosti materiálu odolávat únavovému poškozování při cyklickém zatěžování (viz [11], str. 158).

Všechny tyto vlivy je možno zahrnout do komplexního součinitele vrubu.

5.422 Vliv vrubů při trvalé pevnosti

5.4221 Souměrně střídavé zatěžování

Obecně je součinitel vrubu \(\Delta \) definován jako poměr mezního výkmitu \(\bar{G}_A \) (\(\bar{G}_c \)) zkušebního tělesa (zpravidla hladké tyče) bez koncentrace napětí k meznímu výkmitu \(\bar{G}_c \) (\(\bar{G}_c \)) zkušebního tělesa s koncentrací napětí při stejném shodnění (tj. při stejné středním napětí a při stejném počtu kmitů). Pro případ trvalé pevnosti (při použití označení podle obr. 73) je tedy

\[
\beta = \frac{\bar{G}_c}{\bar{G}_A} \quad \text{resp.} \quad \frac{\bar{G}_c}{\bar{G}_A} = \bar{\sigma}_c^\beta \tag{5.34}
\]

Vysvětlení rozdílu mezi součinitelem vrubu a součinitelem tvaru se hledalo nejprve o základní předpisy o tzv. vrubové citlivosti \(q \) (Thum 1934)

\[
q = (\beta - 1) / (\alpha - 1), \quad \beta = 1 + q (\alpha - 1) \tag{5.35}
\]

Tato nejjednodušší koncepce nebyla podložena žádnou teorií, je vysloveně empirická. Původně se předpokládalo, že \(q \) je materiálovou konstantou. Z rozboru zkoušek vyplývá, že se \(q \) blíží 1 (tj. \(\beta \) se blíží \(\alpha \)) při rostoucích rozměrech součásti, tj. při zvětšujícím se poloměru zakřivení paty vrubu neboli snižujícím se poměrném gradientu napětí.

Peterson (1959) předpokládal, že únavová trhlna se může iniciovat až tehdy, kdy napětí v určité hloubce pod povrchem je rovno mezi únavu (obr. 81)

\[
\bar{G}_c = \beta \bar{G}_{\text{nom}} = \alpha \bar{G}_{\text{nom}} - \alpha \bar{G} \bar{G}_{\text{nom}} \quad \text{tedy} \quad \beta = \alpha (1 - \alpha) \tag{5.36}
\]

Veličina \(\Delta \) je materiálovou konstantou.

Neuber navrhl v r. 1968 koncepci obecného výpočtu součinitele vrubu, použitelnou pro různé druhy zatěžování i oštrých vrubů včetně elastoplastického stavu v koření vrubu. Průběh napětí v příčném průřezu vyjadřuje stupňovitou křivkou udávající integrální hodnoty napětí na jednotlivých strukturálních částech veli-
kosti \(q_R \). Stupňovitá křivka "skutečného
napětí" má menší gradient než křivka vypočet-
vého ("teoretického") redukovaného napětí.
Aby došlo k rozvoji unavového procesu,
musí být dosaženo meze únavy v určité
hloubce \(q^* \) materiálu pod povrchem (obr.
82). Tato hloubka je materiálovou konstantou.
Potom

\[
\beta / \alpha = (1 + q^*/q) \quad \text{1/2}
\]

(5.37)

Všechny dosud uvedené vztahy jsou buď
přímo nebo nepřímo spojeny s poměrným gra-
dientem napětí jako parametrem určujícím
rozsah plastické deformace. Podle Šiebela
a Stielera je poměrný gradient přímo roz-
hodující veličinou: v důsledku nehomogen-
ní napjatosti je vysoce namáhaný lokalní
objem materiálu v kořeni vrubu "podepírán"
okolím objemem materiálu v elastickém
stavu. Velikost tohoto "podpůrného účinku"
je

\[
n = \frac{\sigma}{\beta}
\]

přičemž

\[
n = 1 + \sqrt{\frac{S_3}{\sigma}}
\]

(5.38)

Veličina \(s_q \) ("šířka kluzné vrstvy")
je materiálovou konstantou.

5.4222 Vliv asymetrie kmitu

O vlivu koncentrace napětí na mez
ónavý při asymetrickém kmitu napětí nám
poskytuje představu výsledky experimentů
(obr. 83). Z nich vyplývá, že poměr mezní
amplitudy na hladkém vzorku a vzorku
s vrubem téměř nezávisí na středním napětí (pokrývá poměrně úzké – na obrázku
vyšrafované-pásy): \(S_{A_1} / S_{C_2} = S_{A_2} / S_{C_2} = 0.9 \). Příslušné diagramy (Haighův a
Smithův) se proto nejčastěji znázorňují
s lineárními závislostmi směřujícími
pro hladký a vrubovaný vzorek do jed-
nohého bodu určeného napětí \(S_F \) (obr.
84). Cím je součinitel vrubu větší, tím
se více mezní přímky přibližují k ose
symetrie Smithova diagramu resp. ose
úseček v Haighově diagramu. Tedy tím
více klesá amplituda napětí na mez
ónavý \(S_A \) a rostoucí středním napětím. Z obr. 84 je patrné, že
\[\tan \delta = 1 - \frac{\sigma_{c}}{\sigma_{F}} = 1 - \psi \]
\[\tan \delta' = 1 - \frac{\sigma'_{c}}{\sigma'_{F}} = 1 - \psi' \]
\[\beta = \frac{\sigma_{c}}{\sigma'_{c}} = \psi / \psi' \]

Měrní amplituda \(\sigma'_{A} \) pro jisté střední napětí potom je:
\[\sigma'_{A} / \sigma'_{C} + \sigma_{m} / \sigma_{F} = 1 \]
\[\sigma'_{A} = \sigma'_{C} \left(1 - \frac{\sigma_{m}}{\sigma_{F}} \right) = \sigma'_{C} - \psi \sigma_{m} \]

Napětí \(\sigma'_{F} \) se uvažuje buď rovně mezi pevnosti nebo se určí s pomocí zvolené hodnoty \(\psi \).

S ohledem na vznik plastických deformací je využitelná oblast diagramů ohraničena přímkou \(p \).

Obdobné vztahy je možno odvodit i pro jiné průběhy měnících hodnot v uvedených diagramech.

Je třeba ještě poznat, že při symetrických kmitcích je třeba u součinitele vrubu uvádět, pro jaké podmínky byl stanoven - zda pro \(\sigma_{m} = \) konst., nebo \(r = \) konst., jeho hodnoty jsou v těchto případech rozdílné.

5.423 Vliv vrubu při časované pevnosti

Přítomnost vrubu výrazně ovlivňuje průběh únavového procesu: mění se poměr i délka jednotlivých stadií procesu a děje v nich probíhající. Z porovnání křivek hladkého vzorku a vzorku s vrubem vyplývá (obr. 85), že součinitel vrubu \(\lambda_{u} = \frac{\sigma_{N}}{\sigma'_{N}} \) se s klesajícím počtem kmitů zmenšuje a blíží se 1 pro \(N \) až 100. Pro popis této závislosti však není k dispozici dostatek obecných podkladů. Proto se většinou uvažuje platnost poměru
\[\frac{\sigma_{N}}{\sigma'_{N}} = \sigma_{c} / \sigma'_{C} = \beta \]

tedy nezávislost součinitele vrubu na počtu kmitů \(N \). To potom znázorňuje, že
\[\frac{\sigma_{m}}{\sigma_{N}} = \frac{\sigma'_{m}}{\sigma'_{N}} \cdot N \]
\[\left(\sigma'_{N} \right)^{m} \cdot N = \left(\sigma'_{C} \right)^{m} \cdot N \]

a tedy v log-log souřadné soustavě jsou přímky životnosti spolu rovnoběžné (pro vzorek s vrubem pak platí čerchovaná přímka).

Vliv asymetrické kmitu je v oblasti časované pevnosti prozkoumán ještě méně než v oblasti trvalé pevnosti. Nejčastěji používaný zjednodušený postup (obr. 86)
navazuje na postup z trvalé pevnosti, uvedený na obr. 84. Předpokládá se, že asymetrický kmit s amplitudou napětí \(\sigma_{AN} \) vyvolá stejné únavové poškození jako symetrický kmit s amplitudou \(\sigma^s \). Při lineární závislosti potom je
\[
\frac{\sigma^s_{AN}}{\sigma_{N}} + \frac{\sigma_{m}}{\sigma_F} = 1 \\
\sigma^s_{AN} = \sigma_{N} \left(1 - \frac{\sigma_{m}}{\sigma_F}\right)
\]
(5.43)
Obr. 86

Rozborem experimentálních výsledků bylo též zjištěno, že vzrůstající střední napětí knitu zvyšuje exponent \(m \) křivky životnosti. Pro jinak stejně střední napětí je tento exponent nižší u součástí s větším součinitelem vrubu.

5.43 Koncepce lokálních napětí a deformací

5.431 Úvod

Lokální napětí a deformace v kritických místech (v kořenech vrubů) je možno určit:

a) experimentálně (např. měřením s pomocí odporových tenzometrů),
b) analytickým s využitím teorie plasticity (teorie malých pružnoplasticitých deformací nebo teorie plastického tečení),
c) metodou konečných prvků v plastické oblasti,
d) inženýrskými (přibližnými) metodami.

Ad a) Předpokladem pro použití této metody je přístupnost kritického místa pro nalezení vhodného odporového tenzometru, vhodného především z hlediska velikosti jeho měrné základny, umožňující s přijatelnou přesností měřit špičkové deformace v místech jejich vysokých gradientů. Výsledkem měření je časový průběh deformace (obr. 87 b) odpovídající časovému průběhu zatížení (obr. 87a) (které může být též experimentálně vyšetřováno zejména pomocí nominálního napětí resp. nominální deformace v místě již neovlivněného vrubu). Časové průběhy \(F-t \) a \(\varepsilon-t \) umožňují sestrojit hysteresiální smyčky změn \(F-\varepsilon \) (obr. 87 c). Při známé závislosti napětí - deformace (dane nejčastěji cyklickou deformaci křivkou a z ní odvozených hysterezních smyček) lze pak určit hysteresiální smyčky pro napěťově-deformační poměry v měřeném místě. Uvedený postup je bezproblémový při měření na konstrukci ihned po jejím uvedení do provozu. Jestliže by v okamžiku zahájení měření (v čase \(t = 0 \) již existovalo nenuvolé reziduální napětí a reziduální deformace, musela by se tato skutečnost projevit v posunutí počátku souřadnicové soustavy \(F-\varepsilon \) a \(G-\varepsilon \). Pak však vznikají problémy s uplatněním paměti materiálu, pokud v průběhu měření (nejlépe na jeho samém začátku) není dosaženo nejmeně stejně velké deformace jako před zahájením měření.
ad b) c) Tyto teoretické metody sice umožňují vyšetřit pole napětí a deformací v oblasti vrubu (resp. v celém kritickém průřezu), jsou však pracně, náročné na čas i potřebné softwarové a hardwarové vybavení.

ad d) Z hlediska iniciace trhliny nás zajímají přede vším napěťově-deformační poměry v kořeně vrubu. Pro tento účel poskytují dostatečně přesné výsledky mnohem jednodušší a podstatně operativnější inženýrské metody. Vzhledem ke svým výhodám proto našly široké uplatnění v konstrukční praxi.

Pro početní určení napěťově-deformačních poměrů mohou být údaje o zatížení zadané:

Obr. 87

a) jako posloupnost lokálních extrémů napětí nominálního napětí, vyplývající buď z měření (jako na obr. 75 a) nebo stanovená hypoteticky odborným odhadem;
b) jako korelační tabulka uvádějící četnosti rozkmitů nominálních napětí (případně i se středními hodnotami). Tato bude naprosto převažující způsob při dlouhodobém sledování provozního zatížení (náhodného charakteru) a jeho zpracování provozními analyzátori pracujícími v reálném čase (viz kap. 5.331). V tomto případě (na rozdíl od předchozího) však již nelze stanovit časový průběh napěťově-deformačních poměrů; vliv asymetrie kmitu napětí a deformace lze pak zahrnout pouze zjednodušeným — spíše konzervativním — způsobem.

Důležitou charakteristikou, vystupující v těchto výpočtech, je závislost napětí — deformace (deformační křivka materiálu). Při jednosměrné deformaci je tato křivka dána tahovou (případně tlakovou) deformační křivkou, při cyklické deformaci pak stabilizovanou hysterezní smyčkou a cyklickou deformační křivkou. Experimentálně bylo potvrzeno, že tyto deformační křivky, získané na vzorcích s homogenní napajatostí, je možno použít i pro popis chování lokálních objemů materiálu za nehomogenní napajatosti.

Lokální zvýšené napětí a deformace v kořeně vrubu budeme v dalším vyjadřovat pomocí součinitele koncentrace napětí \(\varepsilon_\varepsilon \) a součinitele koncentrace deformace \(\varepsilon_\varepsilon \):

\[
\varepsilon_\varepsilon = \frac{\varepsilon_{\text{max}}}{\varepsilon_{\text{nom}}} \quad \varepsilon_\varepsilon = \varepsilon_{\text{max}} \quad \varepsilon_{\text{nom}} = \varepsilon / \varepsilon_{\text{nom}} \quad (5.44)
\]

V elastické oblasti je \(\varepsilon_\varepsilon = \varepsilon_\varepsilon = \varepsilon_\varepsilon \); vzniknou-li v kořeně vrubu pružnoplas-
tické deformace, je \(\alpha_\varepsilon > \alpha_H \) a \(\varepsilon < \alpha_H \).

Při víceosém stavu napětostí (deformace) se analogicky k (5.44) zavádí
\(\alpha_\varepsilon, \alpha H, \varepsilon, \alpha H \) pro redukována napětí a deformace.

Pro obecně naznačené napěťové-deformační poměry v koření vrubu uvažujeme situaci znázorněnou na obr. 88. Zatížení vyvolá kruty nominálního napětí pulzujícího v tahu s rozkmitem \(\Delta \sigma_{\text{nom}} \). Pro zjednodušení dalších zápisů je výhodné za-vést si napětí v koření vrubu, vypočtené za předpokladu platnosti Hookova zákona v celém rozsahu zatěžování (tedy i v pružno-plastické oblasti):

\[
\sigma_{\text{HH}} = \alpha_{H} \cdot \sigma_{\text{h, nom}} \quad \Delta \sigma_{H} = \alpha_{H} \cdot \Delta \sigma_{\text{nom}}
\]

(5.45)

I při zatěžování v pružno-plastické oblasti budeme vždy předpokládat stav, kdy pro nominální napětí a deformaci platí Hookův zákon (nepřipustíme tedy, aby toto napětí překročilo mez kluzu):

\[
\sigma_{\text{h, nom}} = E \cdot \varepsilon_{\text{h, nom}} \quad \Delta \sigma_{\text{nom}} = E \cdot \Delta \varepsilon_{\text{nom}}
\]

(5.46)

Analogicky k (5.44) pak jsou pro horní napětí a deformaci a pro amplitudu (resp. rozkmit) napětí a deformace definovány součinitelé

\[
\alpha_{\sigma H} = \sigma_{H} / \sigma_{\text{nom}} \quad \alpha_{\varepsilon H} = \varepsilon_{H} / \varepsilon_{\text{nom}}
\]

(5.47)

\[
\alpha_{\sigma a} = \sigma_{a} / \sigma_{a, \text{nom}} = \Delta \sigma / \Delta \sigma_{\text{nom}}
\]

\[
\alpha_{\varepsilon a} = \varepsilon_{a} / \varepsilon_{\text{nom}} = \Delta \varepsilon / \Delta \varepsilon_{\text{nom}}
\]

Pod amplitudou a rozkmitem fiktivního napětí budeme rozumět

\[
\sigma_{\text{AF}} = E \cdot \varepsilon_{a} \quad \Delta \sigma_{F} = E \cdot \Delta \varepsilon
\]

(5.48)

Z řady známých přibližných koncepcí si podrobněji vědomé pouze velmi často užívané Neuberovy koncepce a novější (a současně též výstižnější) koncepce ekvi-
valentní energie.
Při teoretickém řešení prismatického tělesa s vrubem podrobeného antirovinnému smyku odvodil Neuber vztaž mezi součiniteli koncentrace napětí a deformace ve tvaru $\alpha_6 = \alpha_\epsilon = \alpha_4^2$. I když byl tento výraz odvozen pro roviný smyk, může být s dobrou aproximací zevseobecněn na libovolnou dvou- nebo trojúhou napajatost.

Pozdější výzkumy ukázaly, že lze tuto koncepci použít i pro cyklické zatěžování. Je tedy možno pro "nultý" půlknife vycházející z počátku 0 - viz obr. 88 i pro další následné půlkmit uvažovat platnost výrazů

$$\alpha_{E_h} \cdot \alpha_{\epsilon_h} = \alpha_{E_0} \cdot \alpha_\epsilon = \alpha_4^2 \tag{5.49}$$

Z toho po dosazení do (5.47) a s uvážením (5.45) plyne

$$\delta_{E_h} \cdot \epsilon_h = \delta_{E_0}^2 / E \quad \Delta \delta \cdot \Delta \epsilon = \Delta \delta_{E_h}^2 / E \tag{5.50}$$

Oba dva výrazy jsou rovniciemi rovnosých hyperbol v souřadnicové soustavě $\delta_{E_h} - \epsilon_h$ resp. $\delta_{E_0} - \Delta \epsilon$. Grafické určení napěťové deformací poměrů je zřejmé z obr. 88. Pro "nultý" půlknife, charakterizovaný horním nominálním napětím a tedy též napětím δ_{E_h} a deformací $\epsilon_{E_h} = \delta_{E_h} / E$ (bod 4), dostaneme výsledné napěťové-deformací poměry v průsečíku rovnosých hyperboly určené bodem A s asymptotami procházející počátkem 0 a příslušné deformace křivky, tj. v bodu 0, (A, B, C, E). Při následujícím odečtení o $\Delta \delta_{E_0}$ (z bodu 1 do bodu 2) dojde tedy k poklesu o $\Delta \delta_{E_h}$ z bodu 0. Bod 0, určující veličiny δ_1 a $\Delta \epsilon_1$, dostaneme opět jako průsečík rovnosých hyperboly (určené bodem B, s asymptotami procházejícími počátkem 0) a odpovídající deformací křivky, platné pro následný půlknife.

Uvedený postup je možno opakovat pro všechny další půlkmity zatížení. Nesmí však být přitom opomenuta "paměť materiálu".

Je možno se těž setkat s kritickými výhradami k platnosti vztahu (5.49). Často se doporučuje nahradit v něm α_4 součinitelem v rubru β.

Při známé funkční závislosti deformací křivky můžeme za pomoci shora uvedených vztahů určit velikosti napětí a deformací v kořeni vrubů v průběhu cyklického zatěžování.

Tak při využití cyklických charakteristik podle (5.2) a obr. 63 dostaneme pro "nultý" půlknife probíhající po cyklické deformací křivce

$$\epsilon_h = \delta_{E_h} / E + (\delta_{E_h} / K')^{1/n}, \tag{5.51}$$

$$\delta_{E_h} \left(\frac{\delta_{E_h}}{E} + (\delta_{E_h} / K')^{1/n} \right) - \delta_{E_{hm}} / E = 0$$
a z toho horní napětí iterace.

Horní deformaci ϵ_h kmitu lze pak určit po dosazení do prvého výrazu (5.51) nebo jednoduše z (5.50).

Obdobně pro následný půlknife (probíhající po větvi hysterezní smyčky) dostaneme spojením (5.50) a (5.2)

$$\Delta \delta \left\{ \delta_{E_{hm}} / E + (\delta_{E_{hm}} / 2^{n-1} K')^{1/n} \right\} - \delta_{E_{hm}} / E = 0 \tag{5.52}$$
a z toho rozkmit napětí $\Delta \delta$ opět iterace. Pro stanovení rozkmitu celkové deformace $\Delta \epsilon$, se použije (5.2) nebo jednodušejsi (5.50).

Uvedená pravidla je potom možno využít při vyšetřování odevzdy na složitější
průběhy zatížení.

Celý výpočet je však možno podstatně zjednodušit, jestliže se vyšetřování odezvy bude začínat pro největší zatížení ve spektoru a nahradí-li se hladká cyklická deformační křivka (a tedy i větve hysterezní smyčky) lomenou čárou \(| \delta | \). Tím jednak odpadnou problémy s respektováním paměti materiálu, jednak odpadne nezbytnost opakováných iterativních výpočtů. V přípravné fázi se vyšetří závislost zatížení – deformace v kořeni vrubu, nebojí hodnoty \(\Delta \varepsilon \), příslušející hodnotám \(\Delta \varepsilon_{\text{nom}} \). Velikost rozkmitů \(\Delta \varepsilon_{\text{nom}} \) se volí rovnoměrně odstupňované v počtu 50 – 100 tak, aby byl pokryt celý rozsah vyskytujícího se zatížení. Těmto rozkmitům \(\Delta \varepsilon \), odpovídají rozkmity \(\Delta \varepsilon \). Každému úseku větve hysterezní smyčky přísluší hodnoty \(\delta \) \((\Delta \varepsilon \) a \(\delta \) \(\Delta \varepsilon \).

\[\begin{array}{cccccc}
A & B & C & D & E & A' \\
1 & + & - & + & - & + \\
2 & + & + & - & + & - \\
3 & + & - & - & + & - \\
4 & - & - & - & - & - \\
5 & + & + & - & - & + \\
6 & + & + & + & + & + \\
\end{array} \]

Obr. 89

K převodu zatížení (resp. nominálního napětí) na deformaci v kořeni vrubu slouží matice součinitelů použitelnosti (obr. 89). Začíná-li zatížení svým největším maximem mají prvky matice ve sloupci \(\varepsilon \) hodnotu \(+1 \). Jestliže by zatížení začínalo svým nejmenším minimem, měly by prvky hodnotu \(-1 \). V průběhu sestupného půlkmitu (v jeho průběhu se snižuje \(\varepsilon_{\text{nom}} \)) se možno použít prvky s kladným znaménkem, v průběhu vznéstupného půlkmitu \(\varepsilon_{\text{nom}} \) se zvyšuje pak prvky se záporným...
znaménkem. Vždy, jakmile je příslušný úsek použit, změní se znaménko jeho prvku. Je-li dosaženo lokálního extrému zatížení, začíná se v dalším půlkmitu znovu od prvního úseku. Znaménka prvků u nepoužitých úseků se nemění. Tak např. v průběhu sestupného půlkmitu A-B jsou použity úseky 1-4, proto se změní znaménka jejich prvků ve sloupci B na záporná. Při vzestupném půlkmitu B-C jsou použity úseky 1-3, proto se změní jejich znaménka ve sloupci C na kladná; ostatní znaménka zůstávají nezměněna. Sestupný půlkmit C-D používá úseky 1-3 a 5, takže se změní znaménka pouze u těchto prvků ve sloupci D. V tomto případě však byl v posloupnosti úseků přeskočen (nepoužit) úsek s prvkem stejného znaménka - tedy úsek 4 (jeho prvek je v matici zakroužkován); to svědčí o tom, že v průběhu tohoto půlkmitu došlo k uzavření husterezní smyčky, jejíž velikost je dána počtem úseků nad zakroužkovaným prvkem. V obecném případě může být takto přeskočeno (nepoužito) i více úseků. Rovněž tak nebyl použit úsek 6. V dalších půlkmitích je postup zcela obdobný. Dostáváme tedy tři uzavřené husterezní smyčky.

Při počítacovém zpracování nemusí být v paměti uložena celá matice, ale pouze jeden její sloupec (tedy vektor). Chyba, vznikající zaskoukovaním zatížení na velikosti odpovídající celým úsekům, je při vysokém počtu úseků zanedbatelná.

K výrazněmu zjednodušení analytických výrazů pro výpočet napěťové-deformační odevzdy v koření vrubu dochází při použití deformační křivky pružně-plastického materiálu bez zpevnění (obr. 90). Potom se mohou vyskytnout tři případy:

a) $\sigma_{\text{HH}} < R_e$, $\Delta \sigma_{\text{H}} < 2R_e$, jedná se o namáhání v pružně obstávící:

$$\sigma_{\text{HH}} = \sigma_{\text{HH}} / E \quad \Delta \varepsilon = \Delta \varepsilon_{\text{H}} / E$$

(5.53)

b) $\sigma_{\text{HH}} \geq R_e$, $\Delta \sigma_{\text{H}} \leq 2R_e$ - obr. 90 a, kde je $\sigma_{\text{H}} = R_e$, $\Delta \sigma_{\text{H}}$, takže je

$$\sigma_{\text{H}} = \sigma_{\text{HH}} / (E R_e) \quad \Delta \varepsilon_{\text{H}} = \Delta \varepsilon_{\text{H}} / E$$

(5.54)

c) $\sigma_{\text{HH}} \geq R_e$, $\Delta \sigma_{\text{H}} > 2R_e$ - obr. 90 b. Potom je $\sigma_{\text{H}} = R_e$, $\Delta \sigma_{\text{H}} = 2R_e$.

$$\sigma_{\text{H}} = \sigma_{\text{HH}} / (E R_e) \quad \Delta \varepsilon_{\text{H}} = \Delta \varepsilon_{\text{H}} / (2R_e E)$$

(5.55)

Při hodnocení Neuberovy koncepce je možno konstatovat, že její použití je jednoduché a že poskytuje konzervativní výsledky v porovnání s experimenty.

5.433 Koncepce ekvivalentní energie

Autoři této koncepce (Molski a Glinka [38]) vyšli z porovnání objemové hustoty deformační energie (tj. deformační energie vztážené na jednotku objemu tělesa) od lokálního napětí v koření vrubu W_L a od nominálního napětí (působícího mimo oblast vrubu) W_N. Předpokládáme-li v koření vrubu lineárně elastický stav napjatosti $\varepsilon (\xi) = \xi \varepsilon$, potom při jednodenním zatížení je (obr. 91 a)

$$W_L = \int \delta (\xi) d \xi = \int \delta \varepsilon d \varepsilon = E \varepsilon / 2 = S^2 / (2E)$$

(5.56)

$$W_N = \int \delta_{\text{nom}} d \varepsilon_{\text{nom}} = E \varepsilon_{\text{nom}}^2 / 2 = S_{\text{nom}}^2 / (2E)$$

- 120 -
Platí tedy mezi těmito objemovými hustotami energie vztah

$$\omega = \frac{\delta / \delta_{nom}}{W / W_n}$$

$$W_n = \omega^2 W_n - \omega^2 \delta_{nom}^2 / 2E = \delta_n^2 / 2E$$

Obr. 90
Při provozním zatěžování dochází většinou v kořeni vrubu ke vzniku plastické deformace. Je však možno předpokládat, že při vzniku této plastické deformace v lokálním objemu materiálu (obklopeném materiálem v pružném stavu) nedojde k významnější změně v rozdělení deformační energie a že potom vztah (5.57) platí i v pružně-plastickém stavu. Máme potom uvažovat objemové hustoty deformační energie (při nominálním napětí v elastiční oblasti) (obr. 91 b).

- pro "nulový" půlkmít

\[W_L = \int_{0}^{\varepsilon_h} \sigma_h(\varepsilon_h) \, d\varepsilon_h = \frac{\sigma_{h}^2}{2E} \quad W_K = \frac{\sigma_{h,nom}^2}{2E} \]

(5.58)

- pro následný půlkmít

\[W_L = \frac{1}{2} \Delta \sigma (\Delta \varepsilon) \Delta (\Delta \varepsilon) = \frac{\Delta \sigma_{H}^2}{2E} \quad W_N = \frac{\Delta \sigma_{H,nom}^2}{2E} \]

(5.59)

Konkrétní hodnoty energií závisí na tvaru použitých deformačních křivek \(\sigma_h(\varepsilon_h) \), \(\Delta \sigma (\Delta \varepsilon) \). Tak při použití cyklické deformační křivky dostáváme pro "nulový" půlkmít

\[W_L = \frac{\sigma_h^2}{2E} + \sigma_h(\varepsilon / K')^{1/n} \left(1 + n' \right) = \frac{\sigma_{h,nom}^2}{2E} \]

(5.60)

Z tohoto výrazu lze pak určit horní napětí iterací. Zcela analogickým postupem bychom dostali pro následné půlkmyty

\[\Delta \sigma^2 / 4E + \Delta \sigma (\Delta \varepsilon / 2K')^{1/n} \left(1 + n' \right) = \Delta \sigma_{H,nom}^2 / 4E \]

(5.61)

a z toho rozkmity napětí opět iterací.

I v tomto případě by ke zjednodušení výpočtu přispěla metoda použitelných úseků (viz obr. 89).

Porovnání obou koncepcí je ukázáno pro "nulový" půlkmít na obr. 92. Jak je zřejmé ze srovnání vztahů (5.50) a (5.58), musí být plocha vyšařovaného obrazce OBE stejná jako plocha trojúhelníka OCF. Potom tedy koncepce ekvivalentní energie poskytuje nižší velikosti deformací a napětí než Neuberova koncepce.

Obr. 92

- 122 -
5.5 VÝPOČTOVÉ POSOUŽENÍ ŤÁNOVÝ ŽIVOTNOSTI

5.5.1 Úvod

Jedním z úkolů dynamického řešení konstrukce je její navrhování a dimenzování s ohledem na časově proměnný účinek provozního zatížení. Současně je třeba přitom přihlížet k vlastnostem použitího materiálu, výrobní technologií, možným vadám typu trhlin a k řadě dalších faktorů. Optimální cestou je kombinace teoretického a experimentálního přístupu při řešení dílčích problémů. Na obr. 93 jsou tyto otázky probrány podrobněji a ukázány též možnosti a vzájemné souvislosti při jejich řešení.

Obr. 93
Jedním z nezbytných údajů jak pro predikci životnosti tak pro její ověřování (nejčastěji simulací v laboratorních podmínkách) jsou údaje o zatížení a odezvě (namáhání, deformací aj.) konstrukce. Ty jsou získávány dynamickým řešením - nejvhodnější kombinaci teorie a experimentu. Jejich určování na základě odborného odhady (vždy zatíženého subjektivismem) by mělo být opravdu výjimečné.

Toto zatížení nebo odezva má většinou charakter spíše stochastický než deterministický. Jak pro účely predikce tak i simulace je třeba určit jejich charakteristiky. Druh těchto pchtelních charakteristik je svázán s použitou metodou predikce a simulace (jak je na obr. 93 naznačeno čerchovanými čarami). O způsobech jejich určování bude pojednáno v kap. 5.531. Proměnnost amplitudy odezvy si pak vynucuje použití hypotéz Kumulace poškození (kap. 5.532). V závislosti na způsobu analyzy odezvy (třídícími metodami nebo metodami teorie stochastických procesů) jsou potom k dispozici různé metody predikce (kap. 5.533).

Podle způsobu zahrnutí vlivu vrubu na únavovou životnost je možno použít koncepci nominálních napětí (porovnávací nominální napětí na součásti v místě vrubu s mezi únavy resp. mezí časově únavy) (kap. 5.521) nebo koncepci lokálních napětí a deformací (kdy napětí nebo deformace v kožení vrubu jsou porovnávány s obdobnými veličinami na hladkém vzorku) (kap. 5.522) (viz též obr. 79).

Je třeba rovněž rozlišovat, ke které etapě života konstrukce se zvtahuje použitá výpočtová metoda; na obr. 94 je naznačen zjednodušený algoritmus těchto výpočtů, z něhož jsou tež patrné nezbytné materiálové charakteristiky.

Samotné metody mohou být buď deterministické nebo stochastické (pravděpodobnosti). Pravděpodobnostní metody se v dnešní době stále více rozšiřují do inženýrské praxe; v blízké budoucnosti je možno očekává téměř bezvýhradně jejich užívání.

Požadavky na kvalitu a množství potřebných vstupních údajů do výpočtu závisí na tom, zda se jedná o

a) běžné části strojů a konstrukcí,
b) důležité základní části strojů a konstrukcí,
c) velmi důležité, vysoko namáhané části strojů a konstrukcí.

ad a) Tyto části se počítají podle zásad tvarové pevnosti v podstatě z kriteria vzniku únavových trhlin v kožení vrubu. Výpočet má charakter výrazně deterministický. Bezpečnost se volí dostatečně velká, aby se vyloučily nedokonalosti výpočetního postupu a vstupních údajů. V mezig možností se využívá zkušeností z osvědčených konstrukcí. Uvažované spektrum zatížení je velmi jednoduché - někdy se dokonce uvažuje pouze maximální rozkmit napětí.

ad b) Životnost se zde posuzuje podle zjednodušených pravidel. Zatížení a odezva se určují na základě zkušeností a jednoduchými výpočty. Uvažují se pouze nejdelšší složky namáhání. Používají se hypotézy lineární Kumulace poškození. V nebezpečném místě se předpokládá co nejnebezpečnější kombinace účinků možných zatížení. Předpokládá se vznik a růst únavových trhlin. Předpokládá se případně velikost makroskopických vad a kontrolo výroby (neuvázuje se však vliv těchto vad na dobu života).

ad c) Zde je třeba získat co možno největší množství informací o zatížení a jeho účincích (napětí, deformacích) získaných teoreticky i experimentálně. V provozu bude často třeba uskutečňovat dlouhodobá měření doplňovaná periodickými kontrolami stavu konstrukce (vzorkování a růst trhlin).
5.52 Životnost při konstantní amplitudě odezvy

5.521 Koncepce nominálních napětí

Jak již vyplyvá z nadpisu této kapitoly, jsou v příslušných výpočtech používána nominální napětí jednak meze únavy \(S_c^X, S_N^X, S_A^X, S_N^X \), jednak namáhání od provozního zatížení \(S_a^X, S_m^X, S_h^X \) - pro zjednodušení zápisu je však u nich v této kapitole vynechan index "nom".

- 123 -
5.5211 **Deterministický přístup**

5.5211.1 **Jednoetapový charakter porušení**

I. **Výpočet životnosti**

a) **Výpočet součástí na trvalou pevnost**

Tento způsob výpočtu je nejobvyklejší v etapě návrhu konstrukce, kdy je k dispozici minimum údajů o skutečné únavové pevnosti. Při seriozním propracování poskytuje tento postup dobrou záruku spolehlivosti (její míra však závisí na kvalitě vstupních údajů). V těch případech, kdy je jedná o složitou nebo rozměrnou součást a výpočet se opírá o objektivní stanovenou mez únavy, bývá součinitel bezpečnosti cca 2. Je-li požadována obzvláště vysoká spolehlivost (jako je tomu např. v letectví), je třeba součinitel bezpečnosti i vyšší než 3. V jednoduchých případech, kdy je dostatek prověřených podkladů pro výpočet, bývá bezpečnost 1,3 - 1,7. Při využití experimentálně stanovených křivek životnosti části a uzlů je možno součinitel bezpečnosti snížit pod 1,5.

b) **Výpočet součástí na časovanou pevnost**

Tento výpočet se používá především
- k ověření životnosti částí počítačů na trvalou pevnost, u nichž se však za možných okolností nahodí vyskytuje špičková namáhání,
- k odhadu životnosti v případě změněných podmínek pracovního nasazení s vyššími hladinami kmitočtového namáhání,
- u těch částí a konstrukcí, kde se z důvodů využití materiálu a snížení hmotnosti počítá s omezenou životností.

V těchto výpočtech je však nutno uvažovat vyšší míru nejistoty, než tomu bylo u výpočtů se zálohou bezpečnosti k mezí únavy.

Prostý výpočet životnosti bez experimentálního ověření alespoň křivky životnosti částí však nemá mít jiný než orientační charakter. Požadavek minimálně dvacetinásobné bezpečnosti vztažené k době života není v těchto případech přehnané opatrný.

Ke zvýšení spolehlivosti predikované životnosti je tedy třeba experimentální ověřování za podmínek blízkých provozním.

V krajním případě posouzení základním údají i křivky životnosti stanovené při běžných únavových zkouškách (zejména pokud umožní vyhodnocení rozptýlových charakteristik výsledků).

- 126 -
II. Čnárová pevnost a životnost součástí

Jeden z nejdůležitějších podkladů - křivka životnosti - může být získán experimentálně nebo empiricky.

a) Křivka životnosti součástí se stanoví experimentálně

V tomto případě se uskuteční únavová zkouška součástí za podmínek blízkých provozním co do uchycení součásti ve zkušebním stroji a zavedení kmítnavého namáhání. Ke zkouškám je třeba užít dostatečný počet částí, aby bylo možné statistické výhodnocení
- meze únavy,
- křivky životnosti v oblasti časované únavy a to nejen pro pravděpodobnost přežití 50 %, ale též pro jiné, zvolené, tyto pravděpodobnosti (např. 90 %) (obr. 76).

Pro posouzení životnosti při trvalé nebo časované pevnosti se potom využijí závislosti uvedené v kap. 5.422 a 5.423.

b) Křivka životnosti součástí se stanoví empiricky

Výpočty únavové životnosti vycházející z takovéhoto podkladu je nutno považovat za orientační.

Postupuje se následujícím způsobem:
- určí se mez únavy materiálu \(\sigma_C \) součásti pomocí empirických vzťahů (zjištěná na vzorcích \(\sigma C \) až 8 mm);
- stanoví se velikost součinitele tvaru;
- určí se velikost součinitele vrubu (kap. 5.422 a 5.423);
- mez únavy součásti potom je

\[
\sigma_C^X = \sigma_C \cdot \gamma_v \cdot \gamma_p \sqrt{s}
\]

kde \(\gamma_v \) je součinitel vlivu velikosti součásti. Součinitel \(\gamma_p \) vyjadřuje vliv jakosti povrchu na mez únavy.

- odhadne se sklon šikmé větve Wöhlerovy křivky (exponent m) - počet kmitů \(N_z \) v místě zlomu této křivky se volí s náležitou bezpečností - např. \(7 \cdot 10^5 \) až \(1.10^5 \) kmitů;
- takto sestrojenou Wöhlerovu křivku považujeme za křivku pro pravděpodobnost přežití \(P = 50 \% \);
- pro zahrnutí vlivu asymetrie kmitu se zvolí některá aproximativní metoda.

III. Součinitel bezpečnosti

Tento součinitel nám vyjadřuje, kolikrát musí vznést provozní namáhání (amplituda nebo horní napětí kmitu) než je dosaženo mezního stavu. Při jeho určování však nejde opomenout základní předpoklad - deterministický charakter všech vstupních veličin. V součiniteli bezpečnosti je potom proměnná naše neznalost variability těchto veličin.

Jako závažné mezní stavy jsou v této souvislosti uvažovány (obr. 95):
- mezní stav únavového porušení \(M_1 \) daný průsečníkem zatěžovací dráhy (přírušovaná čára) a přímky (nebo křivky) horních mezních kmitů,
- mezní stav pružnosti \(M_C \) kdy horní nominální napětí v nosném průřezu dosahuje
meze kluzu σ_n (spíše výjimečně se požádává, aby horní lokální, tj. špičkové, napětí nedosáhlo meze kluzu).

Dálešitou rolí má charakter přetěžovací dráhy, tj. vzájemná souvislost mezi napětím σ_a, σ_m, σ_h při přechodu z provozního stavu (bod P) do mezinného stavu (body M, M').

5.5211.2 Dvojtapový charakter porušení

Výstižnější posouzení únavové životnosti respektuje dvě rozhodující stadia únavového procesu - stadium iniciace makrotřhlin y a stadium jejího růstu (viz obr. 60 a 61). K určení počtu kmitů N_p se využije křivek životnosti (zjištěných na vzorcích při vzniku trhlin), ke stanovení počtu kmitů pro růst trhliny N_L pak zákonnosti lomové mechaniky.

5.5212 Pravděpodobnostní přístup

Ukáže si příklad tohoto přístupu vycházející z interferenční teorie (viz kap. 3.5).

Uvažujeme odezu s konstantní amplitudou napětí, která však kolísá a to jak následkem změn provozního režimu (např. v souvislosti s písobením regulačních řídících systémů dané konstrukce) tak i následkem změn výrobních a provozních vlivů (např. tolerancí, seřízení). Rovněž mezi únavy kolísa a to v důsledku nehomogenity výchozího materiálu, technologii tepelného a mechanického zpracování i dalších výrobních a provozních faktorů. Budeme též předpokládat, že se obě tyto charakteristiky řídí Gaussovým zákonem rozdělení ± 1.5.

Podmínka porušení se určí z pravděpodobnosti převyšení amplitudy napětí σ_a nad mezní únavy σ^{X}_{c}, tj.

$$M = \sigma^{X}_{c} - \sigma_{a} < 0$$ \hspace{1cm} (5.63)

Jsou-li σ^{X}_{c} a σ_{a} nezávislé veličiny s normálním rozdělením, pak veličina M má rovněž normální rozdělení se střední hodnotou \bar{M} a směrodatnou odchylkou s_M, přičemž

$$\bar{M} = \overline{\sigma^{X}_{c}} - \overline{\sigma_{a}} \quad s^{2}_{M} = s^{2}(\overline{\sigma^{X}_{c}}) + s^{2}(\overline{\sigma_{a}})$$ \hspace{1cm} (5.64)

Pravděpodobnost porušení R odpovídá hodnota

$$M_{p} = \bar{M} + u_{R} s_{M}$$ \hspace{1cm} (5.65)

kde u_{R} je příslušný kvantil normálního rozdělení. Hodnota $M = 0$ odděluje oblasti záporných a kladných hodnot veličiny M (tedy oblasti kdy je $\sigma^{X}_{c} < \sigma_{a}$ a kdy je $\sigma^{X}_{c} > \sigma_{a}$), tj. kdy nedojde nebo dojde k porušení; pravděpodobnost porušení potom dostaneme ze vztahu

$$M = \bar{M} + u_{R} s_{M} \quad u_{R} = \frac{\bar{M}}{s_{M}} = \frac{\overline{\sigma^{X}_{c}} - \overline{\sigma_{a}}}{\sqrt{s^{2}(\overline{\sigma^{X}_{c}}) + s^{2}(\overline{\sigma_{a}})}}$$ \hspace{1cm} (5.66)
Zavedeme-li součinitel bezpečnosti vrácený ke středním hodnotám a variační koeeficienty

\[k = \frac{\bar{\sigma}_c^x}{\sigma_a}, \quad v(\sigma_c^x) = \frac{s(\sigma_c^x)}{\bar{\sigma}_c^x} = \frac{s(\sigma_a)}{\bar{\sigma}_a} \] \hspace{1cm} (5.67)

její po úpravě

\[U_R = \left(1 - k \right) \frac{\sqrt{k_c^x \cdot v^2(\sigma_c^x) + v^2(\sigma_a)}}{V_a} \] \hspace{1cm} (5.68)

že známého kvantilu \[U_R \] se s využitím statistických tabulek určí pravděpodobnost porušení \[R \]. Pravděpodobnost přežití \[P = 1 - R \].

Analogicky k výrazu (5.68) lze uvést výraz pro oblast časované pevnosti:

\[U_R = f(\sigma_a) = \frac{1 - k_N}{\sqrt{k_N^x \cdot v^2(\sigma_N^x) + v^2(\sigma_a)}} \] \hspace{1cm} (5.69)

kde součinitel bezpečnosti \[k_N = \frac{\bar{\sigma}_N^x}{\bar{\sigma}_a} \]. Vztah (5.69) je pak možno použít pro stanovení počtu kmitů odpovídajících požadovaným pravděpodobnostem porušení.

Všimněme si nyní bliže variačního koeeficientu \[v(\sigma_c^x) \]; ten je dán jako

\[v^2(\sigma_c^x) = \frac{1}{n} \cdot \sigma_c^x \cdot v^2(\sigma_c^x) + v^2(\sigma_a^x) = \frac{1}{n} \cdot \sigma_c^x \cdot v^2(\sigma_a^x) + v^2(\sigma_c^x) \] \hspace{1cm} (5.70)

Zde je \[v(\sigma_a^x) \] výriační koeeficient maximálního napětí \[\sigma_a^x \cdot \sigma_c^x \]; charakterizuje rozptyl mezi únavy součásti vyrobených z jedné tavy materiálu; pohybují se v mezích \[0,05 - 0,10 \]. Variační koeeficient \[v(\sigma_c^x) \] medíánových mezi únavy \[\sigma_c^x \] ukazuje na rozptyl mezi únavy různých materiálů. Přibližně je možno předpokládat, že je stejný jako variační koeeficient meze pevnosti: \[v(\sigma_a^x) = 0,05 - 0,10 \]. Variační koeeficient \[v(\sigma_c^x) \] ukazuje na odchylky rozměrů součásti od jmenovitých (především v místě vrbů); bývá \[v(\sigma_c^x) = 0,02 - 0,10 \]. Obvykle tedy je \[v(\sigma_c^x) = 0,05 - 0,30 \], přičemž \[v(\sigma_c^x) > 0,20 \] ukazuje na nedobrou úroveň technologie výroby.

5.522 Koncepcie lokálních napětí a deformací

Všechny metody, které jsou používány k výpočtu životnosti, vycházejí z řady zjednodušujících předpokladů o chování součásti s koncentrací napětí. Jsou založeny na předpokladu ekvivalence životnosti součásti s vrubem a hladkého vzhoru (tzv. vzhoru bez vrubu), pokud jsou dodrženy jisté relace mezi jejich lokálními napětěmi a deformacemi (jak je znázorněno na obr. 79). Velikosti těchto lokálních napětí a deformací jsou určovány způsoby popsanými v kap. 5.43; jsou označovány \[\Delta \sigma, \Delta \varepsilon \], \[\Delta \varepsilon_c \], atd. U označení nominálních napětí a deformací je uveden index "nom". Některé z metod uvažuje uplatnění vlivu vrubu v průběhu celého únavového procesu (jednoeta- pový přístup), jiné uvažuje tento vliv pouze do vzniku makroskopické trhliny (dvoueta- pový přístup).

5.522.1 Jednoeta pový přístupy

a) Ekvivalence lokálního napětí

Autoři této metody - Crews a Hardrath - předpokládají ekvivalenci stabilizačných lokálních napětí v kořeni vrubu reálné součásti a na povrchu hladkého zkušebního vzorku při stejných dobách života. Počet kmitů do porušení se určuje z křivky
životnosti δ_0 - N. Tak např. s využitím (5.24) je $\delta_a = \delta_e (2N)^a$, $N = (\delta_a / \delta_e)^{1/p} / 2$. Predikce životnosti podle této metody dobře souhlasí s experimentálními výsledky v oblasti nízkokmitové únavy, zvláště u součástí z hliníkových slitin. V oblasti středního počtu kmitů do porušení (při cca $10^4 - 10^5$ kmitů) se již souhlas horší, zejména pro mějivý kmit zatěžování.

b) Ekvivalence lokálních deformací

Zde se předpokládá ekvivalence lokální deformace v koření vrubu součásti a na povrchu hladkého vzorku. Postupy podle kap. 5.43 se určí $\Delta \varepsilon_{bt} = 2 \varepsilon_{at}, \delta_0, \varepsilon_0$ (případně též $\varepsilon_{at}, \varepsilon_0$), které jsou potom vstupními údaji do křivek životnosti z kap. 5.33 pro určení počtu kmitů do porušení.

Do této kategorie je možno též zahrnovat postup, který je užíván v americkém ASME Codu [89]. Podle tohoto příspisu se však neurčují lokální napětí a deformace v průřezu plastického stavu (tedy např. $\Delta \delta, \Delta \varepsilon_{bt}, \delta_0, \varepsilon_0$) viz kap. 5.43), ale pouze napětí a deformace za předpokladu elastičního chování v celém rozsahu zatěžování (tedy rozkmit napětí $\Delta \delta_H$). Počet kmitů do porušení pak určuje z křivek životnosti $\delta_a - N$ (kde $\delta_a = \varepsilon_{at}, \varepsilon_0$) pro dané $\delta_a = \delta_a - \Delta \delta_H / 2$. Uvedená křivka životnosti v jednom korigována s ohledem na největší možný nepřímý vliv středního napětí, jednak zahrnuje součinitele bezpečnosti pro amplitudu fiktivního napětí a součinitele bezpečnosti pro dobu života. Podrobnější o této otázce je např. v [90].

Tento předpoklad ekvivalence lokální deformace - zdánlivě samozřejmý - však nemusí být vždy splněn. Existují experimentální výsledky, které jsou s ním v rozporu.

c) Ekvivalence kombinace napětí a deformace

Do této skupiny je možno zařadit výpočetní postup, který navrhl Toppin: vychází z Neuberovy koncepce, avšak součinitel tvaru δ_H v (5.49) nahrázuje součinitelem vrubu δ_H, takže dostává výraz vztah

$$\sqrt[\beta]{\delta_0 \cdot \varepsilon_0} \cdot \frac{\Delta \delta_{nom} \cdot \Delta \varepsilon_{nom}}{E}$$

což pro předpoklad nominálního napětí v elastické oblasti (tedy $\Delta \varepsilon_{nom} = \Delta \delta_{nom} / E$) vede na výraz

$$\sqrt[\beta]{\delta_0 \cdot \varepsilon_0} \cdot \frac{\Delta \delta_{nom}}{E}$$

Toppin potom předpokládá, že k iniciaci trhliny na součásti s vrubem a na hladkém vzorku dojd je tehdy, jestliže hodnota $\beta \cdot \delta_{nom}$ na součásti s vrubem je rovna hodnotě $\sqrt[\beta]{\delta_0 \cdot \varepsilon_0} \cdot \frac{\Delta \delta_{nom}}{E}$ na hladkém vzorku. Lze tedy sestrojit jedinou křivku životnosti platící pro součásti s vrubem a pro hladký vzorek. Počet kmitů do porušení pak plyne ze vzorce (sestaveného s využitím (5.24) a (5.72))

$$\left\{ \frac{4 \delta^i (2N)^i}{E} \left(\delta^i (2N)^i + \varepsilon^i (2N)^i \right) E \right\}^{1/2} = \beta \Delta \delta_{nom}$$

Tento Toppinův postup však přehloubí vliv asymetrie kmitu na životnost.

Všechny vlivy prokrvativního kmitu je však přístup, který navrhl Smith; z (5.11)

plyne

$$\delta_{sym} - \varepsilon_{at}^{sym} = \frac{\delta_h - \varepsilon_{at}^{sym}}{2}$$
kde hodnota pravé strany rovnice (vztahující se k asymetrickému kmitu) je dána lokálními poměry v kořeni vrubu, hodnota levé strany rovnice (vztahující se k symetrickému kmitu) je dána poměry na hladkém vzorku. Počet kmitů do porušení pak lze stanovit z výrazu

$$\sigma'_l (2N)^b / \varepsilon'_l (2N)^c = | \sigma'_m \cdot \varepsilon'_{st, asym} (5.74)$$

d) Ekvivalence hysterézní energie

Zde se předpokládá, že k iniciaci trhliny na součásti s vrubem a na hladkém vzorku dojde po stejném počtu kmitů, jestliže jsou stejné jejich absorbované energie do lomu. Jedná se zde tedy rovněž o ekvivalence kombinace napětí a deformace - i když v porůzku jiným tvaru než v případech případě. Ani zde není brán zřetel na asymetrii kmitu napětí a deformace.

5.522.2 Dvojtezapové přístupy

a) Manson a Hirschberg předpokládají (pro stejnou dobu života) ekvivalence lokální deformace v kořeni vrubu a na povrchu hladké zkušební tyče pouze v etapě do iniciace makrotříznů. Tomu příslušný počet kmitů se určí některým ze shora uvedených postupů. Ke stanovení počtu kmitů pro růst trhliny užívají jednoduchý empirický výraz $N_c = 14 \sigma_c^0.6$. Celkový počet kmitů do porušení pak je $N_c = N_0 - N_c$.

b) Využití lomové mechaniky pro posouzení etapy růstu je nesporně výstižnější. V této souvislosti však vzniká otázka určení hranice mezi etapou nukleace a etapou růstu. V kap. 5.13 k tomu bylo uvedeno několik smluvních pravidel. Ve [91] je navržen model pro určení této hranice na základě rovnosti rychlostí nukleace trhliny a rychlostí jejího růstu.

5.53 Životnost při proměnné amplitudě odevy

5.531 Metody analyzy časových průběhů napětí a deformací

5.531.1 Přehled metod

K získání vstupních údajů pro teoretickou predikci doby života i pro laboratorní simulace je třeba podrobit odevzu na provozní zatížení analýze pro získání vhodných a potřebných charakteristik. Předmětem analýzy má být odevz na reprezentativní zatížení, s kvalitou jeho zjištění přímo souvisí i kvalita získaných výsledků. Je tedy třeba počítit s nejpozorovatelnější hodnotou provozního nádechu, která by se cyklicky opakovala až do počet desetin jednotky provozu, která by se cyklicky opakovala až do po

Přesně funkce a metody používané pro měření a analýzu provozního zatížení a odvody se budou lišit podle účelu jeho nebo podle požadavků na jejich přesnost a rozsah. Budou tedy jiné pokud nás zajímají pouze vybrané hodnoty (maximální a minimální hodnoty), statistické charakteristiky, velikost rozmezí, frekvenční spektrum a pod. Volbu metody a potřebné vybavení též ovlivňuje skutečn
nost, že provozní zatížení a odezva mají v naprosto převažujícím počtu případů stochastický charakter; případy s deterministickým charakterem jsou dosti výjimečné.

V zásadě se používají dvě skupiny metod analýzy (nebo též schematizace, charakterizace) náhodného provozního zatížení. Obě dvě se snaží postihnout veličiny, které podle zkušeností ovlivňují rozhodujícím způsobem proces únavového poškozová-
ání. Jejich vývoj a používání též souvisí s vývojem technických prostředků - ať již jednoúčelových vyhodnocovacích zařízení a počítačů (analogových i číselných).

První skupina metod je založena na určování četnosti průchodů hladinami, výskytu a lokálních extrém a nebo rozkmitů jisté velikosti atp. Celkové budeme v dalším tyto metody nazývat třídicími metodami. Vyskytují se však i jiné názvy: metody systematické, schematizace, diskretizace, dekompozice, četnosti charakteristických parametrů.

Druhá skupina metod, vycházející ze vzorkování v ekvidistantních časových intervaloch, určuje klasické charakteristiky jako jsou střední hodnota, rozptyl, distribuční funkce, korelační funkce, výkonová spektrální hustota. Jsou to tedy metody založené na teoriích stochastických procesů; takto budou tyto další názvy.

Lze se též setkat s jejich označením "metody na základě korelační teorie" (pro zdůraznění použití pouze momentů prvních dvou řádů). Žádá se, že tato skupina metod bude nít větší význam spíše pro účely laboratorní simulace než pro predikci doby života.

Velkou výhodou třídicích metod je, že jim lze zpracovávat i výrazně nestacionární procesy; to v rámci teorie stochastických procesů není tak snadné nebo vůbec možné.

Třídicí metod byla vypracována celá řada - liší se počtem a druhy parametrů, které se vyšetřují:

1. jednoparametrické metody, kdy kriteriem je
 a) čas ve třídě,
 b) průchod hladinou (překročení hranice třídy),
 c) poloha extrému,
 d) existence rozkmitu.

 Tyto metody převádějí vyšetřovaný proces na náhodnou četnost hranic.

2. dvouparametrické metody určují velikost rozkmitů i jejich střední hodnotu. Výsledek je pak zpracováno v dvourozměrné korelační tabulce (z ní je možné též sestavit spektra podle libovolných kriterií jednoparametrických metod).

 Pomocí takto získaných jedno - dvou - nebo třírozměrných polí četností lze pak též určit empirické hustoty pravděpodobnosti rozdělení jednotlivých charakteristik parametrů, vznášející rozdělení a kovarianci. Nedoměstnost jednoparametrické klasifikace je zřejmá: na únavové poškození má vedle amplitudy napětí (deformace) též vliv příslušná střední hodnota kmitů. Žádáme se proto pouze na dvouparametrické metody a to na dvě nejvýznamnější.
5.531.2 Metoda četností následných lokálních extrémů

Jiné používané názvy jsou: metoda četností pozitivních a negativních špiček (tento název ji však dostatečně neodlišuje od jednoparametrické metody četnosti lokálních extrémů), metoda koreláční tabulky (avšak koreláční tabulku sestavujeme i u jiných dvouparametrických metod). Pojem "následné lokální extrémy" chceme vyjádřit podstatu této metody, kdy jsou jednotlivé půlkmitity zatížovány pomocí svých následných extrémů - výchozích a koncových bodů, maxim a minim.

Příslušná koreláční tabulka se sestrojuje nejčastěji podle obr. 96.
V její hlavičce jsou označeny třídy pro zařazení konce půlmitu (bez ohledu na to, zda se jedná o lokální maximum nebo minimum). Jednotlivé řádky pak udávají třídy pro zařazení začátku půlmitu (ač vzestupného nebo sestupného). Tak např. začíná-li půlfík ve třídě 4 a končí-li ve třídě 6, znázorní se to v tabulce v prásečíku řádku 4 a sloupcu 6 vzrůstem četnosti o 1. Pro názornost jsou čísla jednotlivých půlmitů uvedena v příslušných okénkách v závorkách.

Z této korelační tabulky pak je možno sestavit spektra podle různých dalších kriterií:
- četnosti lokálních extrémů (relativních vrcholů) získáme ze součtu četností v jednotlivých řádcích;
- četnosti lokálních maxim dostaneme součtem četností v řádcích nad hlavní úhlopříčkou;
- četnosti sestupných půlmitů získáme z polí nad hlavní úhlopříčkou a to ze součtu četností na jednotlivých úhlopříčkách rovnoběžných s hlavní úhlopříčkou;
- četnosti vzestupných půlmitů plynou z četností v polí pod hlavní úhlopříčkou a to opět ze součtu četností na úhlopříčkách rovnoběžných s hlavní úhlopříčkou;
- četnosti kládých středních hodnot půlmitů získáme z pole nad vedlejší úhlopříčkou a to ze součtu četností na jednotlivých úhlopříčkách rovnoběžných s vedlejší úhlopříčkou;
- četnosti záporných středních hodnot půlmitů získáme z pole pod vedlejší úhlopříčkou obdobným způsobem jako v předchozím případě.

Korelační tabulka podle obr. 96 je též podkladem pro sestavení matice pravděpodobnosti přechodů potřebné pro některé druhy zkoušek životnosti při simulaci provozního zatížení.

5.531.2 Metoda stěkání došlé se střední hodnotou (main flow with mean)
(též metoda pagody - "pagoda-roof")

Tato metoda umožňuje nejlépe z dosud uvedených metod nahrádit časově složité průběh provozního zatížení spektrum harmonických kmitů o určitém rozmitu a střední hodnotě. Navrhl ji v r. 1968 Matsuiaki a Endo. Obsažené výsledky jejího experimentálního ověření publikoval Dowling 1921. Pro stanovení půlmitů a kmitů deformace (napětí) platí několik základních pravidel (obr. 97):

1. Proud došlé vytéká z jednotlivých zdrojů a stéká po nakloněné střeše; těmito zdroji jsou
 a) začátek záznamu deformace - čas (bod 1),
 b) vnitřek každého vrcholu střechy,

2. Proud tekoucí po střeše
 a) buď narazí na proud došlé padající shora; pak se zastaví - došlo tedy k vytvoření půlmitu (např. 3'-2', 6'-5', 9'-8'),
 b) nebo dojde na okraj střechy a padá dolů (2, 3, 4,);

3. Proud padající dolů
 a) buď dospěje v určitém časovém okamžiku
 a) ke kláděnímu maximu než bylo maximum z něhož tento proud vycházel, nebo
 ab) k zápornému minimu než bylo minimum z něhož proud vycházel a vytvoří tak půlmit. Např. proud vycházející z 2 skončí naproti 4, nebo proud
z 1 skončí naproti 5;
b) nebo dopadne na spodní střechu a pokračuje po ní dále (body 2, 5, 8);
4. z půlkmitů stejné velikosti a opačných smyslů se vytvoří celé kmity.

Každý úsek záznamu se tedy započítává pouze jednou.

Jestliže aplikujeme uvedená pravidla na časový průběh deformace, započítáváme půlkmit mezi nejkladnějším maximem a nejzápornějším mininem jaké se vyskytnou v našem záznamu. Tyto dva extrémy tak určují vrcholy největší hysterezní smyčky. Předpokládejme, že se z těchto dvou extrémů dříve vyskytne nejkladnější (největší) maxim. Postupujeme nyní zpět k začátku záznamu a tvoříme půlkmity z tohoto nejkladnějšího maxima a nejmenšího minima vyškytuvšeho se před ním, potom půlkmit z tohoto minima a před ním se vyskytuvšeho maxima atd. Obdobným způsobem tvoříme půlkmity ve směru časové osy po dosažení nejmenšího minima záznamu: je zde půlkmit mezi tímto mininem a následujícím největším maximem, tímto maximem a následujícím nejmenším mininem atd. až na konec záznamu. Velikost rozkmitů jednotlivých půlkmitů tedy nejprve vzrůstají až ke svému maximu a pak opět klesají.

Všechny zbývající deformační průběhy vlastně přerušují tyto jednotlivé půlkmity a vytvářejí dlouhé kmity - uzavřené hysterezní smyčky, resp. jejich kombinace.

Jestliže je zjevně, vystihne tuto metodu skutečný průběh napěťové - deformačních poměrů v celé historii zatěžování (pro stabilizovanou odevzu materiálu). Hodnocení únavového poškození od velkých rozkmitů přerušených malými rozkmity zde není zkrášleno - poškození od malého rozkmitu se přičte k poškození od velkého rozkmitu.

Praktické využití metody stěkání deště je možné pouze s využitím počítačů, pro něž byla vypracována celá řada algoritmů. Tyto algoritmy jsou založeny buď na koncepci matic používaných úseků nebo na koncepci vektorové.

První koncepce vychází z náhrady hladké křivky hysterezní smyčky lomenou čarou; pro každý její úsek je zaveden jeho součinitel použitelnosti uvádějící, jaká část úseku byla použita. Příslušná pravidla, umožňující rovněž zahrnout cyklické
zpevňování, změkčování a relaxaci publikoval Wetzel [93]. Zjednodušenou variantu - kdy se užívá pouze celých úseků, nikoliv jejich částí - uvedl Socie [87]; její využití bylo ukázáno na obr. 89.

U vektorové koncepce slouží jednorozměrné pole (vektor) k uložení těch lokalních extrémů, které dosud nevytvořily uzavřené hystерезní smyčky.

U celé řady algoritmů je třeba, aby před začátkem analýzy byly známy lokální extrémy z celé vyhranocované realizace. Pro vlastní analýzu je pak nutno upravit poslužnost lokálních extrémů tak, aby se začínalo největším lokálním maximem nebo nejméně minimem. Algoritmy tohoto typu však nejsou vhodné pro zpracování v reálném čase (jak je např. požadováno u provozních analyzátorů). Pro tyto účely navrhl algoritmus Downing a Socie [94]. Oznáme jako X velikost uvažovaného půlkmitu a jako Y velikost předcházejícího půlkmitu; každý přechod lokální extrém se ukládá do vektoru E(n), počáteční (startovní) extrém označíme S. Zmíněný algoritmus probíhá v následujících krocích:
1. čti další lokální extrém (v případě nedostatku dat pokračuj krokem 6),
2. urči velikosti půlkmitů X a Y (jestliže vektor E(n) obsahuje méně než 2 prvky, pokračuj krokem 1),
3. porovnej půlkmity X a Y:
 a) jestliže X < Y, pokračuj krokem 1,
 b) jestliže X = Y a Y obsahuje extrém S, pokračuj krokem 1,
 c) jestliže X > Y a Y obsahuje extrém S, pokračuj krokem 4,
 d) jestliže X = Y a Y neobsahuje extrém S, pokračuj krokem 5,
4. ztotožní extrém S s následujícím prvkem vektoru E(n) a pokračuj krokem 1,
5. započítej do korelační tabulky úplný kmit s rozkmit v elikostí Y; vypusť lokální extrémy odpovídající půlkmitu Y a pokračuj krokem 2,
6. čti další lokální extrém od počátku vektoru E(n) (jestliže však byl znovu přečten startovní extrém S, pak STOP),
7. urči velikosti půlkmitů X a Y (jestliže vektor E(n) obsahuje méně než 2 prvky po extrému S, pokračuj krokem 6),
8. porovnej půlkmity X a Y:
 a) jestliže X < Y, pokračuj krokem 6,
 b) jestliže X > Y, pokračuj krokem 9,
9. započítej do korelační tabulky rozkmit o velikosti Y; vypusť lokální extrémy odpovídající půlkmitu Y a pokračuj krokem 7.

Ověřte si správnost tohoto algoritmu v příkladu záznamu na obr. 97.

5.32 Hypotézy kulumace poškození

5.32.1 Úvod

Problém únavové životnosti při proměnné amplitudě odevzdy je v porovnání s námaháním při konstantní amplitudě daleko složitější. Při poškozování materiálu se uplatňuje nožen kmitové namáhání s vysokými amplitudy, ale tož jejich interakce a nízkými amplitudy, či dělo změn středních napětí, charakteru namáhání aj. Rozsáhlý výzkum těchto problémů poskytli již celou řadu podkladů, které umožňují hodnotit vliv rozhodujících faktorů. Na únavovém poškozování se významně podílejí dva rozsáhlé mechanismy - nukleace únavových trhlin a jejich růstu. Technické praxe však většinou zatím neodděluje zmiňované dvě etapy a poškozující účinky se vztahují až ke konečnému únavovému lomu. Toto zjednodušení však nerozpoznává rozdílnost po-
škrozování v obou uvedených etapách: tak v etapě nuklace nepřispívají amplitudy napětí ležící pod mezi únavy k růstu poškození; v etapě růstu zase s rostoucí délkou trhliny klesá amplituda napětí, při níž se zastaví růst trhliny (a tedy dále nenarůstá poškození). V obou stadiích se rovněž projevuje různě vliv historie zatížování. V etapě nuklace vysoké amplitudy odevzdy snižují životnost. V etapě růstu však naopak vysoké amplitudy odevzy zvyšují prahové hodnoty při nichž se trhliny zastaví, to pak vede ke zvýšení životnosti.

Podle použitého způsobu analyzly odevzdy na provozní zatížení dostáváme buď spektrum bloků kmitů (s různými amplitudy a středními hodnotami), nebo soubor charakteristik vyplývajících z teorie stochastických procesů. Tomu také odpovídají dvě skupiny hypotéz kumulace poškození.

5.3.2.2 Koncepce nominálních napětí

5.3.2.21 Hypotézy kumulace při analýze třídícími metodami

Uvažujme nejprve odevzu s konstantní amplitudou napětí. Každý kmit (popsaný nejlepší uzavřenou hystерезní smyčkou) vyvolá určitá elementární poškození ΔD_i. Po proběhnutí n kmitů je celkové poškození $D_n = \sum_{i=1}^{n} \Delta D_i$. K porušení dojde po proběhnutí N kmitů, kdy je poškození

$$D_N = \sum_{i=1}^{N} \Delta D_i = 1$$

(5.75)

Předpokládáme-li, že kumulace poškození při kmitovém zatížení je nejprvé zbyvající proces, musí D_n splňovat okrajové podmínky: pro $n = 0$ je $D_0 = 0$ (dané součást je tedy bez vady), pro $n = N$ je $D_N = 1$. Tvar funkce D_n vyjadřuje potom různý charakter hromadně poškození při zvyšování počtu kmitů odevzdy:

- nejprvé je lineární funkce:

$$D_n = \psi \cdot n - n / N, \quad \psi = 1 / N,$$

(5.76)

d$$D_n / dn = \psi = \text{konst}.$$

kde hodnota ψ plyne z okrajové podmínky pro $n = N$. Požadavky vyvolané s -stupňovým blokem zatížení s počtem kmitů

$$N_b = \sum_{i=1}^{5} n_i$$

pak je

$$D_N = \sum_{i=1}^{5} D_i = \sum_{i=1}^{5} (n_i / N_i)$$

(5.77)

- polytropická (tedy ne-lineární) závislost

$$D_n = \psi(\sigma_b) \cdot n^{\psi(\sigma_b)} - (n / N)^{\psi(\sigma_b)}$$

(5.78)

kde funkce $\psi(\sigma_b)$, $\psi(\sigma_b)$ závisí na napětí. Poškození připadající na jeden kmit závisí jak na napětí, tak na počtu kmitů. Jednodušší forma závislosti (5.78) předpokládá stejný průběh kumulace při různých amplitudách napětí (tedy $\psi = \text{konst}.$).
\[\psi = \text{konst.} \]

\[D_n = \psi \cdot n^\psi = \left(n / N \right)^\psi \]
\[\frac{dD_n}{dn} = \psi \cdot n^{\psi-1} \] \hspace{1cm} (5.79)

Konkrétních tvarů těchto lineárních a nelineárních funkcí byla navržena celá řada. Uvádí se však, že tyto složitější funkce nepříliš reálně zvyšují spolehlivost výpočtových odhadů životnosti, zbytečně komplikují celé posouzení a proto se od nich všeobecně upuštějí. V dalším tímto všimneme pouze těch nejzpouštěnějších hypotéz.

\[D_n = p_b \cdot D_b = p_b \sum_{i=1}^{n} \left(\frac{n_i}{N_i} \right) = 1 \] \hspace{1cm} (5.80)

Obr. 99

Počty kmitů do porušení \(N_i \) pro jednotlivé amplitude napětí \(\delta_{ai} \) se vztahují (obvykle) k Wöhlerově křivce pro pravděpodobnost přežití 50 % (obr. 99). Při výpočtu poškození \(D_n \) se uvažují pouze amplitudy napětí vyšší než \(\delta_a \), potom např. s využitím křivky životnosti (5.42) s udáním, že

\[\delta_{ai} = \delta_c^X \]

je podmínka (5.80)

\[p_b \sum_{i=1}^{n} \left(\frac{n_i}{N_i} \right) = 1 \] \hspace{1cm} (5.81)

Výpočty životnosti podle této hypotézy souhlasí přijatelně se skutečností u součástí z hliníkových slitin (proto se metoda v široké míře uplatňuje v le-tečtech) a z nízkohlinitých ocelí. Není však vždy v souladu s experimenty - při porušení též bývá \(D_n = 0.3 \) - 12 podle posilovnosti amplitudy napětí a mechanických vlastností materiálu. Tak např. při stupňovitěm zatěžování s klesající amplitudou dojde k porušení při \(\sum (n_i/N_i) < 1 \), vzniká-li stupňovitě amplituda, dojde k lomu při \(\sum (n_i/N_i) > 1 \).

Hypotéza Syvý, Lincert, Jelínek

Je jistou modifikací Palmgren-Minerovy hypotézy. Na rozdíl od ní vychází z Wöhlerovy křivky pro pravděpodobnost přežití \(P = 95 \% \) (obr. 99), takže podmínka porušení má tvar

\[D_n = p_b \cdot D_b = p_b \sum_{i=1}^{n} \left(\frac{n_i}{N_i} \right) \] \hspace{1cm} (5.82)

Platí \(\log N_i - \log \hat{N}_i = \psi \cdot \log N \) (pro \(\lambda = 1 - P \)). Další rozdíl spočívá v tom, že se uvažují poškozující údinky amplitudy napětí \(\delta_a \) většině než pravděpodobnost \(\delta_ap \). Objevení se bere \(\delta_{ap} = 0.5 \cdot \delta_c^X \).

Tato hypotéza poskytuje velice přijatelné relace prozkoumovaných a skutečných životností (jejich soulad byl porozuměn ve více než 85 % případech). U důležitých
součástí s mimořádnými požadavky na spolehlivost by bylo možno zajistit další zálohu bezpečnosti velkou křivku s ještě vyšší pravděpodobností přežití - např. P = 99 \%.

Hypotéza Serensenen-Kogaljova

Použitá modificovaná křivka životnosti je rovnoběžná s mediánovou křivkou (pro P = 50 \%), přičemž posunutí log \(\hat{N}_i \) a log \(N_i \) je log a závisí na tvaru a agresivitě spektra.

Součinítele tvaru (plnost) spektra odpovídá střední hodnotě poměrných amplitud napětí v bloku

\[
\tilde{\xi} = \frac{\sum_{i}^5 \left(\frac{6_{ai}}{\max 6_{ai}} \right) \cdot n_i}{\sum_{i=1}^5 n_i} = \frac{1}{\max 6_{ai}} \sum_{i=1}^5 \left(\frac{6_{ai}}{n_i} \right)
\]

(5.83)

Součinítele agresivity je funkcí tvaru spektra a poměru \(\max 6_{a} / 6_{c} \)

\[
1 - a = \frac{1 - \tilde{\xi}}{1 - \gamma} \quad \gamma = \frac{\max 6_{ap}}{\max 6_{a}} = \frac{\tilde{\xi}}{\tilde{\xi} - \gamma}
\]

(5.84)

Jako poškozující se uvažují nadprahové amplitudy napětí \(\tilde{\xi}_a > \tilde{\xi}_{ap} = \tilde{\xi} \cdot \tilde{\xi}_a \), kde se brává \(\tilde{\xi} = 0,6 + 0,7 \).

Výraz (5.84) lze použít tehdy, jestliže je \(a > 0,05 \) až 0,1; výsledky vypočtení nižší hodnoty, použije se \(a = 0,05 \) až 0,1. Podmínkou porušení pak je

\[
D_a = \rho_a \cdot \hat{N}_a = \rho_a \sum_{i=1}^5 \left(n_i / \hat{N}_i \right) - 1, \quad \hat{N}_a = a \cdot N_a
\]

(5.85)

Sedláčkova hypotéza

je variantou předchozí hypotézy, posunutí modificované Wöhlerovy křivky je

\[
a = 1 - \max 6_{a} / 6_{m}
\]

(5.86)

kde \(\max 6_{a} \) je největší horní napětí vyskytující se ve spektru. Jako poškozující se však uvažují amplitudy napětí nad mezní údany (\(\tilde{\xi}_a > \tilde{\xi}_m \)).

Heibachova hypotéza

využívá modificace Wöhlerovy křivky, jejíž úsek pro \(N > N_z \) má exponent \(w = 2m - 1 \) (obr. 100). Uvažují se pak poškozující účinky všech amplitud napětí.

Uvedená modificace byla navržena na základě rozboru výsledků zkoušek ocelových spojů. Je také zahrnuta v ČSN 73 6205 "Navrhování ocelových mostních konstrukcí" \(m = 3,45, \ w = 5,45 \) - tedy poměrně méně než podle shora uvedeného předpisů.
patří již do skupiny nelineárních hypotéz kumulace poškození. Byla formulována v roce 1956 na základě předpokladů, z nichž řada je dnes v rozporu se známými výsledky experimentů.

Poškození vyvolané jedním stupněm začíná je (obr. 101)

\[D_i = n_i \left(\frac{S_{ci}}{S_{ci}^d} \right)^d = n_i \left(\frac{S_{ci}}{S_{ci}^d} \right)^{d-m} \]

a je tedy nelineární funkcí počtu kmitů. Z (5.87) těží plynule, že \(D_i = n_i / \hat{N}_i \), takže podmínka porušení je

\[D_i = \rho \cdot D_2 = \rho \left(\sum_{i=1}^{n_i} \frac{S_{ci}}{\hat{N}_i} \right) = 1 \] (5.88)

\[\hat{N}_i = N_i \left(\frac{S_{ci}}{S_{ci}^d} \right)^d \]

Z výsledku experimentu je \(d = 0.7 \pm 0.9 \). Podle této hypotézy se uvažují poškozující účinky všech amplitud napětí, což je však jednodušším přístup. V etapě nukleace neprispívají amplitudy napětí pod hranicí únavy k růstu poškození (pokud ne-

Důležitý je pak pravděpodobnost napětí závisí na délce trhliny.

Metoda dává ve velkém počtu případů - zejména u zušlechtěných ocelí - přijatelný soulad prohlášených a skutečných životností.

U upravené varianty této metody se používá Wöhlerova křivka s pravděpodobností přežití 95%, pak se uvažuje poškozující účinek amplitud napětí \(S_{ci} > 0.5 S_{ci}^d \).

5.3.21 Hypotéza kumulace při analýze na základě teorie stochastických procesů

Těchto hypotéz kumulace poškození byla rovněž navržena celá řada. V zásadě nebyly rozděleny na dvě skupiny podle toho, zda se rozhodující parametry poškození se považuje

a) hustota pravděpodobnosti pořadnic nebo amplitud náhodného procesu odezvy (te-

dy charakteristika 1. řádu),

b) výkonová spektrální hustota procesu (nebo alespoň jeho rozptyl) tedy výkon-

procesu (popsaný charakteristikami 2. řádu). Jelikož uvažujeme, že k únavo-

vám poškozování dochází v důsledku pohlcování dodávané energie (závislé na

velikosti amplitudy napětí a její frekvenci), potom je tato skupina hypotéz

- 110 -
výstižnější než předchozí.

ad a) Hustotu pravděpodobnosti amplitud můžeme analogicky k její definici (tj. relativní četnost dělená šířkou elementárního intervalu proměnné) vyjádřit jako
\[f(S_a) = \frac{n_1}{n_b} / dS_a \]

kde \(n_1 \) je počet mítů na amplitu \(S_a \) a \(n_b \) je celkový počet mítů.

Podmínka prostorově parametrizována je (5.89) řešitelnou numerickou integrací:
\[N = \int f(S_a) dS_a \]

Při známém rozdělení hustoty pravděpodobnosti je (5.90) řešitelnou numerickou integrací:
\[N = \int f(S_a) dS_a \]

Při známém rozdělení hustoty pravděpodobnosti je (5.90) řešitelnou numerickou integraci:
\[N = \int f(S_a) dS_a \]

Při známém rozdělení hustoty pravděpodobnosti je (5.90) řešitelnou numerickou integraci:
\[N = \int f(S_a) dS_a \]

5.32.3 Koncepce lokálních deformací

6. HODNOCENÍ ODLNOSTI KONSTRUKCE PROTI KŘEHKÉMU PORUŠENÍ V ETAPĚ JEJICH NÁVRHU

6.1 PROBLEMATIKA HODNOCENÍ OCELÍ A ZAŠTIŠTĚNÍ INTEGRITY KONSTRUKCE

V souvislosti s křehkým porušením materiálů a konstrukcí nás zajímají především dvě základní otázky:

1. Hodnocení ocelí z hlediska křehkého porušení s cílem
- vývoje a optimizace výroby a zpracování ocelí a kontrola kvality vyráběné ocelí,
- porovnání různých ocelí z hlediska jejich odolnosti proti křehkému porušení,
- získání podkladů pro volbu ocelí pro dané provozní podmínky, případně pro posouzení mezinního stavu křehkého porušení.

2. Zajištění integrity součástí a konstrukcí z hlediska křehkého porušení s cílem v etapě projekce a konstrukce (při posouzení předpočítáno vady) i v etapě výroby a provozu (posouzení zajištěné vady – této otázce je věnována 7. kapitola).

Při řešení této problematiky je nutno vycházet z nepříznivých účinků mate-
riálových vad a to především vad typu trhliny. Tyto trhliny mohou vznikat v důsledku provozních podmínek (trhliny únavové, creeperové, korozivní aj.), mohou v konstrukci však též být jako důsledek předchozích technologických operací. Je jako nutno zvlášť zdůraznit možnou nepříznivou roli svařování jako jedné z potenciálních příčin křehkých lomů. Je to proto, že ve svarovém kovu vznikají vady - jednak nekvalitním svařováním (hrubé strukturní váměstky, neprůvody, vruby ap.), jednak v důsledku přítomnosti nepříznivých filmů na hranicích zrn (sirníky, fosfidy, silikáty, karbidy) (způsobují trhliny za tepla), jednak v důsledku poklesu plasticity (což je dáno jak vlastnostmi materiálu, tak i nepříznivým vlivem trojose napjatosti). Trhliny vznikají též v teple ovlivněné oblasti (TOO) a to jak v přechodovém pásmu na rozhraní mezi svarovým kovem a základním materiálem (často u austeničitých ocelí), tak i za studena (zhrizděné trhliny) - především u ocelí martensitických a bainitických. Tvorbu těchto zbřezdených trhlin (vznikají za poměrně dlouhou dobu po dokončení svaru - za sniny až dny) podporují tahová napětí (tepelná a strukturní pnutí), obsah vodíku (zásadní vliv má technologie svařování - vlivnost obalu elektrod, tavidla, nečistoty, mastnoty svarových ploch), chemické složení základního materiálu (lze posuzovat podle uhličového ekvivalentu), rychlost ochlazování TOO. Nejúčinnějším opatřením, kterým lze omezit vznik trhlin za studena je předehřátí základního materiálu na vhodnou teplotu. V TOO dochází též ke zhrizdění trhlin, a to vedle sání jemného a samozřejmě i houževnatosti. Houževnatost (vrubová i hommová) přídavného kovu je odlišná od houževnatosti základního materiálu. U některých ocelí dochází v TOO ke vzniku trhlin až při čichání na odstranění zbytkových napětí. U kofene trhlin dochází k lokálnímu vyčerpání tvárných vlastností kovu.

Vlivem provozního prostředí dochází též ke strukturální degradaci, mající za důsledek pokles houževnatosti a posun transzních teplot k vyšším hodnotám. Tyto degradáční pochody jsou různých typů [96]:

a) nemění mikromechanismus křehkého porušení - např. předdeformace za studena (případně se následním stárnutím), cyklická předdeformace, precipitační vytvrzování, ozáření ocelí, změna charakteru a rozložení sekundární fáze způsobená redistribucí legujících případ působením vyšších provozních teplot.

b) částěně mění mikromechanismus křehkého porušení - iniciace křehkého lomu potom nastává kombinovaným účinkem interkrystalického porušení a transkrystalického štěpení. To je vyvoláno částěně vyvinutou popouštěcí křehostí (výrobni degradace), částěně vyvinutou vodíkovou křehostí a nebo též provozní expozici nízkolegovaných ocelí v intervalu teplot (350 až 550°C) v němž dochází k rozvoji segregačních procesů.

c) zcela mění mikromechanismus křehkého porušování - iniciace křehkého lomu pak nastává kombinovaným mechanizmem interkrystalického porušení a transkrystalického štěpení. To je vyvoláno plně vyvinutou popouštěcí křehostí (výrobni degradace), vodíkovým zkřehnutím, dlouhodobou expozicí za přítomnosti vyššího obsahu prvků schopných segregace.

Z předchozích přednášek je již známo, že se křehké porušení vyznačuje dvěma odlišnými, ne sebe navazujícími, stadii: stadiem iniciace a stadiem růstu křehké trhliny. (Pod pojmem iniciace rozumíme okamžik přechodu kvaristické trhliny v rychle a nestabilně se šířící lom). Jiné vlivy jsou určující pro iniciaci trhliny, jiné pro její růst. Tak na iniciaci trhliny má především vliv přítomnost trhlin orientovaných kolmo ke směru působení tahového napětí, zbytkové napětí, lokální pokles plasticity a houževnatosti. Růst trhliny je zase významné ovlivněn
strukturou, tloušťkou materiálu a velikostí největšího hlavního napětí. Proto také je možno použít k hodnocení odolnosti materiálu a konstrukcí proti křehkému porušení různých přístupů [obr. 102] [1971]: za předpokladu existenci trhliny je třeba

1. zabránit iniciaci lomu v nejkřehší oblasti (dostatečné houževnatosti v této oblasti je dosaženo při nižší teplosti než je provozní teplota),

2. zabránit šíření lomu v základním materiálu (jestliže předtím došlo k iniciaci lomu v nejkřehší oblasti – např. v lokálně zkřehnuté oblasti svaru), tedy užit základní materiál s takovou houževnatostí, aby v něm došlo k zastavení lomu (základní materiál musí mít dostatečný odpor proti šíření lomu při nižší teplotě než je provozní teplota),

3. zabránit šíření lomu ve všech oblastech konstrukce (např. ve všech oblastech svarového spoje).

Je zřejmé, že jestliže je možno zabránit šíření trhliny, zabrání se tak i její iniciaci (a dosahuje se větší odolnosti proti křehkému porušení). Proto je možno považovat za nejbezpečnější 3. přístup a za nejméně bezpečný 1. přístup. Z tétoho důvodu se první výzkumné práce zaměřily na vyšetřování podmínek zastavení křehké trhliny (nejčastěji na stanovení přechodové teploty houževnato-křehkého lomu). Později se ukázalo, že pro většinu ocelových konstrukcí pracujících v atmosférických podmínkách je splnění podmínky zastavení lomu buď výhradně neuskutečnitelné nebo uskutečnitelné za vysokých nákladů. Proto byly podrobněji rozpracovány přístupy zaměřující se na zabránění iniciace křehké trhliny využívající k tomu účelu zákonitosti lomové mechaniky.

Postupy pro zajištění integrity konstrukcí proti porušení (nazývané v anglosaské technické literatuře "fracture control plan") zahrnují
- stanovení faktorů přispívajících ke vzniku lomu součástí nebo porušení celé konstrukce včetně popisu provozních zatížení a provozních podmínek,
- určení významu těchto faktorů pro vznik lomu nebo poškození,
- stanovení účinnosti různých návrhových metod určených k minimalizaci možností vzniku lomu nebo porušení,
- doporučení týkající se jednotlivých činitelů, které je nutné brát v úvahu při zajištění spolehlivosti proti vzniku lomu (jako např. volba materiálu, velikosti namáhání, pokyny pro výrobu a kontrolu aj.).

Velmi důležité (avšak též nesnadné) je vytvoření takovýchto postupů pro typické konstrukce jako jsou tlakové nádoby, mosty, letadla aj.

- 143 -
Při posuzování odolnosti konstrukce proti křehkému lomu tedy můžeme použít dvou přístupů (koncepcí):
- koncepcí transznitních teplot,
- koncepcí lokových mechaniky.

V řadě případů však dochází k jejich prolínání při využívání korelací mezi charakteristikami lokové mechaniky a některými transznitními teplotami.

6.2 KONCEPCE TRANSZNITNÍCH TEPLOT

Transznitní chování, tj. změna mechanizmu porušení v závislosti především na teplotě a rychlosti zatěžování je typickým projevem ocelí nízké a střední pevnosti. Změnou těchto (a ještě dalších faktorů) dochází k porušování buď mechanizmem vysokoenergetické tvárné separace nebo nízkoenergetickým transkristalickým štěpením. Takovýmto způsobem je možno definovat transznitní teplotu křehkosti T_B (u hladkého taženého vzorku dochází k lomu na dolní mezi kluzy) a transznitní teplotu houževnatosti T_D (u hladkého taženého vzorku dochází k prudkému poklesu lokového napětí a kontrakce zkušební tyčky) (viz též [1], str. 85).

Tento jev je rovněž pozorovatelný při rázových zkouškách vzorků s vrubem: v závislosti na teplotě klesá energie potřebné ke zlomení vzorku, přičemž se současné mění též vzhled lokové plochy. Potom lze vyznačit též jisté kritické rozměry křehkosti v němž se vyskytují jak křehké, tak i houževnaté lomy.

K dalšímu nejznámějšímu transznitnímu teplotám patří teplota zastavení trhliny T_{2T}, teplota nulové houževnatosti T_{NDT} (nul ductility transition) a transznitní teplota elastického lomu T_{FTE} (fracture transition elastic). Tyto transznitní teploty se též užívají pro konstrukci inženýrských lokových diagramů, uvádějících do vzájemné souvislosti napětí, teplotu a velikost vady pro konstrukce bezpečně proti křehkému porušení.

Nejvýznamnější faktory ovlivňují posuvy těchto transznitních teplot byly probírány v [1], str. 87.

6.22 Přehled zkoušek transznitních teplot

Pro zjišťování různých transznitních teplot byla navržena celá řada zkoušek, lišících se
- velikostí zkušebního tělesa,
- způsobem namáhání (zatížení) - statické nebo dynamické,
- způsobem zhotovení vрубu - buď umělý vrub (s přesně definovanou geometrií) nebo přirozený vrub (trhliny) nebo konečně vala ve svarovém spoji.

Z množství známých zkoušek uvedeme pouze ty nejůžležitější a nejznámější.

1. Rázová zkouška vrubové houževnatosti

Tato zkouška zůstává doposud nejrozsáženější (a do budoucna asi těž zůstane) metodou hodnocení křehkolumových vlastností ocelí.

Mezi její výhody patří zejména
- malé rozměry zkušebních těles a jejich jednoduchý tvar - tedy malá spotřeba materiálu a nízké výrobní náklady,
- možnost odběru zkušebních těles z hotových výrobků nebo polotovarů,
- dlouhodobá tradice provádění těchto zkoušek a tedy rozsáhlé zkušenosti s velikostmi vrubových houževnatostí ve vazbě na reálné konstrukce,
- nenáročné zkušební zařízení a jednoduché provádění zkoušek.

Nevýhodami těchto zkoušek jsou především
- obtížnost přenosu výsledků zkoušek na reálné výrobky (zvláště v případě jejich velkých rozměrů),
- nemožnost bezprostředního kvantitativního posouzení konstrukce s vadou typu trhliny,
- omezení na materiály vykazující tranzitní chování.

Používané vruby se postupně sjednacovaly, až se dospělo ke třem základním typům vrubů 100:
- U-vrub o hloubce 2 mm pro stanovení vrubové houževnatostí materiálů s relativně malou houževnatostí nebo pevností,
- U-vrub o hloubce 3 mm pro materiály s větší houževnatostí nebo pevností,
- V-vrub u materiálů s velkou houževnatostí, kde U-vrub nedává dostatečnou citlivost pro hodnocení.

Podrobnosti zkoušení jsou v ČSN 42 0381, 42 0382 a 42 0385 (viz též [1], str. 105). Vzorek je namáhán tříbodovým ohybem na rázovém kladiu. Měří se energie potřebná ke zlomení vzorku při různých teplotách. Z takto získaných přechodových křivek se určují tranzitní teploty
- pro střední vrubovou houževnatost \(KV_{stř} \),
- pro jistou konvenční vrubovou houževnatost (např. \(T_{35} \) pro \(KCV = 35 \text{ J/cm}^2 \), \(T_{28} \) pro \(KV = 28 \text{ J ap.} \)),
- pro určitý procentuální podíl lomové plochy mající vzhled houževnatého resp. křehkého lomu (např. \(T_{50\%} \) - pro 50 % podíl houževnatého lomu),
- při níž vykazuje 100 % lomové plochy křehký vzhled,
- při níž je lom iniciován tvárným mechanismem,
- pro určitou velikost příčného rozšíření vzorku na jeho tlakové straně.

Další užitečnou hodnotou je velikost \(KV_{max} \), která je měřítkem tendence oceli k nízkoenergetickému porušování (přesahuje-li cca 100 J, lze hovořit o dostatečné odolnosti proti tomuto typu porušení). Měřená energie ke zlomení vzorku má dvě části: iniciaciální složku (která je s ohledem na zaoblení křehkého vrubu bez únavové trhliny značná) a složku potřebnou k růstu trhliny. Tuto nevýhodu nemají zkoušky s křehkými iniciacemi v rubu, u nich je iniciací energie minimální.

2. **Zkouška padajících závaží** (\(DVWT \) - drop weight test)

Určuje se teplota, při níž je trhlna (iniciovaná v křehkém návaru) schopna se rozšířit při napětí kolem mezí kluzu přes celý průřez (viz [1], str. 108). Ta-to teplota se nazývá tranzitní teplotou nulové houževnatosti \(T_{NPT} \). Zkouška tedy charakterizuje odolnost proti šíření trhliny. Podrobnosti o provádění zkoušky jsou v ČSN 42 0349.

3. **Zkouška různým obvody velkých těles** (\(DVWT \) - drop weight test)

Používá se na hodnocení odolnosti proti šíření křehké trhliny ocelí na plynovodní potrubí o tloušťce 6 až 20 mm. Přechodová teplota stanovena podle této zkoušky (viz ČSN 42 0346) odpovídá předepsanému podílu (obvykle 50 %, jindy 75 % nebo 85 %) houževnatého lomu na vymezené části lomové plochy zkušebního tělesa.
4. **Zkouska na razony ohyb (DT - dynamic test)**

Zkoušební tělesa (ČSN 42 0340) jsou dvou druhů:
- pro tloušťky 5 až 16 mm mají rozměry 8 x 41 x 180 mm a jsou opatřeny ostrým li-
sovaným vrubem do hloubky 13 mm,
- pro tloušťku 25 mm má vzorek rozměry 25 x 120 x 460 mm a je opatřen vrubem hlu-
bokým 45 mm vytvořeným titanovým drátem protaveným elektronovým paprskem.

Zkoušky se provádějí na podostrojích nebo velkokapacitních kyvadlových kladi-
vech 10 kJ při různých teplotách. Měří se energie potřeba pro lom vzorku. Vzhle-
dem k tomu, že díky speciální úpravě vrubu je práce pro iniciaci zanedbatelná, má-
fí se vlastně odpor materiálu proti šíření trhliny.

V porovnání s ráznou zkouškou v ohybu zde (v důsledku větší tloušťky vzorku, ostřejšího vrubu a delší dráhy lomu) nastává výrazná změna v lomovém chování
v tranzitní oblasti. S ohledem na tuto skutečnost se DT- zkouška jeví jako zkouš-
ka, mající těsnější vztah k chování konstrukce s vadami v provozu a to zejména
v souvislosti s odolností konstrukce proti šíření lomu.

Z průběhu energie E_{DT} v závislosti na teplotě je možno určit (198, 101):
- teplotu T_{NDT}, která odpovídá teplotě na úpatí křivky (nad ní přechází průběh
křivky do tranzitní oblasti),
- teplotu T_{YC} (yield condition) = T_{FTE}, tj. teplotu inflexního bodu, která prak-
ticky odpovídá teplotě v polovině rozsahu energie E_{DT} mezi dolní a horní úrov-
ní (nebo také přibližně jednou polovinou $E_{DT \text{ max}}$ - rozdíl je nesignifikantní),
- tranzitní křivka je zde velmi strmá). Při této teplotě dochází k zastavení
trhliny v danou tloušťku materiálu při napětí na mezi kluzu materiálu. Ukazu-
je se dobrá korelace mezi touto teplotou a teplotou NDT a též teplotou, při níz-
má po DT-zkoušce 50 % lomové plochy tvárný charakter 101.
- energii $E_{DT \text{ max}}$, která charakterizuje metalurgickou kvalitu oceli a umožňuje
posoudit různé faktory, které ovlivňují odolnost proti šíření lomu v tranzitním
stavu (nad touto teplotou je vyloučeno šíření křehkého lomu pro danou tloušťku).
Velikost této energie dobře koreluje s K_{max} 101.
- teplotu T_k, což je maximální teplota při níž dochází k křehké iniciaci,
- teplotu T_b, jako maximální teplotu, nad kterou nedochází k přechodu z tvárné
iniciaci na křehké šíření,
- teplotu T_{50} % při níž má 50 % lomové plochy tvárný charakter.

Rozborem výsledků zkoušek a využitím teoretických úvah bylo prokázáno (viz
99, 101), že lze výsledky E_{DT} = T transformovat do souřadnicového systému na-
pětí - teplota. Je tedy možno pomocí tranzitních teplot T_{NDT} a T_{FTE} sestrojit
průběh křivky T_{DT} aniž by bylo nutno zkoušet velká tělesa.

5. **Zkoušky na zastavení trhliny**

a) zkoušky s teplotním gradientem podle Robertsona (viz taf 1, str. 110). Static-
é zatížení vyvolává ve vzorku napětí od poloviny do meze kluzu, iniciace se
provádí úderem. Teplota v místě zastavení trhliny je označována jako T_{IT} ma-
teriálu (CAT - crack arrest temperature).

Nepatrné odlišný je tvar vzorku pro zkoušku ESSO, která se provádí buď při
konstantní teplotě nebo s teplotním gradientem.

b) zkouška při konstantní teplotě odstraňuje problémy s určováním místa zastavení trhliny. Vzorek má konstantní teplotu s výjimkou okolí vrubu, které je podchlazené. Kriteriem při zkoušce je to, zda křehká trhlna proběhla či neproběhla přes celou šířku vzorku (go - no go). Odpovídající teplota je teplota ne-
šíření trhliny T_{NDT} (ICAT - isothermal crack arrest temperature).

S polečnou nevýhodou těchto zkoušek jsou rozměrná zkušební tělesa a z toho plynoucí značné nároky na velikost potřebného zatížení. V podniku ŠKODA Plzeň bylo pro tyto účely postaveno zkušební zařízení schopné vyvinout sílu až 80 MN.

c) zkouška na dvojitý tah (DTT - double tension test) se používá pro materiál men-
ších tloušťek (10 až 50 mm).

6.23 Kriterium vrubové houževnatosti

Mezi nejstarší kriteria pro volbu materiálu patří kriterium velikosti vrubové houževnatosti určené na vzorku Charpy-V. Z rozsáhlých rozborů vykonaných po hro-
madných haváriích lodí typu Liberty (materiálem byly plechy tloušťky 10 - 38 mm z poloukliděné oceli s 0,12 - 0,36 % C, 0,3 - 0,5 % Mn, mezi kluzu 230 - 270 MPa, mezí pevnosti 420 - 490 MPa) vyplynulo, že při vrubových houževnatostech menších než 16 J vznikaly v materiálu křehké trhliny, při houževnatostech v rozmezí 18 - 28 J trhliny nevznikaly, ale mohly se šířit a konečně při vrubových houžev-
vatostech větších než 28 J docházelo k zastavení šířících se trhlin. Z toho vzniklo - i u nás velmi často používané - kriterium přechodové teplohy KV = 28 J, neboli KCV = 35 J.cm$^{-2}$. Je-li tedy probozní teplota vyšší než shora uvedená tranzitní teplo,
je mohu používat konstrukci za odolnou proti křehkému porušení (docha-
zí v ní k zastavení šířící se trhliny). V tomto kriteriu je též brán zřetel na vliv tloušťky plechu (do 38 mm). Nekritické používání tohoto kriteria T_{28J} pro jiné typy zkušebních vzorků, ocelí s vyššími pevnostmi nebo materiály s většími tloušťkami není správné.

Hlásíme vrubové houževnatosti se používá též pro zatížení ocelí do jakost-
ních skupin podle ISO. Podle meze kluzu se rozlišují nelegované a nízkolegované ocelí tříd Fe E 235, Fe E 275 a Fe E 355. Jakostní skupina je určena teplotou pro zaručenou vrubovou houževnatost: B při +20°C, C při 0°C, D při -20°C, D při -40°C, E při -50°C. Zaručované hodnoty vrubové houževnatosti při těchto teplotách jsou pro oceli třídy Fe E 235 a Fe E 275 KV = 28 J, pro Fe E 355 pak KV = 40 J.

Při využití korelací mezi vrubovou houževnatostí a lomovými houževnatostmi
využívají v toto kriteriu též koncepce lomové mechaniky.

6.24 Teplota T_{NDT}

Tato teplota je základní materiálovou charakteristikou v koncepci tranzitních
teplot pro zabezpečení konstrukce proti křehkému lomu. Představuje teplotu, při
níž je základní materiál schopen zastavit šířící se malou trhlinu při napětí na
mezi kluzu oceli. Nad teplotou T_{NDT} vzrůstá poměrně rychle odolnost proti šíře-
ní lomu.

Teplota T_{NDT} je též uznávána řadou institucí (např. firmou Thyssen) jako
hlavní kriterium křehkolisté odolnosti při vývoji ocelí pro nízké teploty.

- 147 -
Důležitost této teploty se ukazuje též v souvislosti s jejím uplatněním při konstrukci lomových diagramů (viz kap. 6.26) a trvá i v dnešní době. Nelze přehlédnout názory, že návrh nešikovné svařované konstrukce s komplikovanějšími uzly proti iniciaci křehkého lomu za použití lomové mechaniky je problematické. Lokálně zkrhnuté oblasti ve svaru a tepelně ovlivněné oblasti jsou jen obtížně zjištěné a i když je pravděpodobnost jejich výskytu nízká, nelze jejich nepřítomnost úplně zaručit.

Rovněž čs. zkušenosti s používáním C-Mn ocelí ukazují, že provoz některých typů svařovaných konstrukcí běžně nad teplotou T_{NDT} je zpravidla bezpečný z hlediska křehkého lomu.

Je tedy možno konstatovat, že u řady konstrukcí bude zabráněno křehkému lomu při provozních teplotách nad T_{NDT}.

U svařitelných užitkových a C-Mn ocelí souvisí T_{NDT} velmi úzce s teplotou $T_{50 \%}$ ze zkoušky vrubové houževnatosti (32):

$$T_{NDT} = T_{50\%} - (20 \pm 8) ^\circ C$$ (6.1)

Znalost tranzitních teplot T_{NDT} a T_{FTE} a dynamické meze klužu na teplotě potom též umožňuje sestrojení závislosti dynamické lomové houževnatosti K_{ld} na teplotě (98; 99). Vychází se přímo z poznatku, že při T_{NDT} je $K_{ld}/R_{ed} = 2,5 \text{ mm}^{1/2}$ (viz již dříve uvedený vztah (4.48) a že při T_{FTE} je hodnota $(K_{ld}/R_{ed})^2$ rovna tloušťce použitých vzorků B. Při teplotě, kdy je ve vzorku dosaženo rovnovážná deformace, platí $B = 2,5 (K_{ld}/R_{ed})^2$. Dále se využívá skutečnosti, že teploty T_{FTE} pro vzory tloušťky 16 mm a 250 mm jsou vůči sobě posunuty o 44°C (tento posun nezavírá na oceli). Mezi tloušťkami 25 a 250 mm je tento posun 40°C.

6.25 Teplota zastavení trhlin

Znalost těchto teplot v závislosti na namáhání umožňuje sestrojit křivku, která je důležitou součástí lomového diagramu (viz kap. 6.26). Předpokladem správného využití teploty zastavení trhlin je splnění podmínky stejného lomového chování zkoušebního tělesa v laboratorních podmínkách a skutečné konstrukce v provozu. Potom lze uvážovat, že iniciovaný lom (ať již v oblasti vyššího koncentrace napětí nebo v lokálně zkrhnuté oblasti) se nevzbudí a už se nevznikne stejně jako T_{ZT} pro dané namáhání.

Určování teploty zastavení trhlin na rozměrných tělesech je obtížné a nákladné. S výhodou je proto možno využít k tomuto účelu výsledků DT-zkoušek, kdy se vychází z následujících zjištění (31, 98, 99):—při teplotě T_{FTE} je dosaženo T_{ZT} pro napětí na mezi klužu,
—při teplotě T_{NDT} je dosaženo T_{ZT} pro napětí cca 35 – 55 MPa,
—při teplotě odpovídající stavu rovnovážná deformace je splněna podmínka $K_{ld} = K_{ld}$. Při uvažování velikosti trhlin $a = 38$ tomu odpovídá napětí o přibližně velikosti 0,3 R_{ed}.

Jiný způsob transformace výsledků DT-zkoušek do souadnicové soustavy napětí–teplota je uveden v [31, 103]. Využívá se zde předpoklad (podle LELN) o kvadratické závislosti lomové energie na napětí.
Dobrou korelací s teplotou zastavení trhliny vykazuje teplota $T_{50\%}$ (při niž má 50% lomové plochy při zkoušce KCV houževnatý vzhled): pro ferriticko-perlitické a bainitické oceli se navrhuje pro odhad teploty zastavení trhliny při napětí na mezí kluzu [102]:

$$T_2 = T_{50\%} + \Delta T$$ \hspace{1cm} (6.2)

kde ΔT je zvýšení přechodové teploty vlivem tloušťky materiálu. Pro tloušťky od 16 do 50 mm se toto zvýšení pohybuje od 20 (30) do 55 (65)$^\circ$C (v závorkách pro bainitické oceli).

Méně přesný odhad poskytne relace využívající tranzitní teplotu při $KV = 40 \ J$ [102]:

$$T_{2T} = T_{40\%} + 30^\circ C + \Delta T$$ \hspace{1cm} (6.3)

Jak též vyplývá z výše uvedeného, má velikost akumulované energie v tělese vliv jak na iniciaci trhliny, tak i na její růst; jinak se buď chovat nádoba při tlakování kapalinou, jinak při tlakování plynom. Zvyšováním akumulované energie se snižuje "pevnost" při porušení a plastické charakteristiky, teplota zastavení trhliny se naopak zvyšuje; vzrostě-li akumulovaná energie 1000 krát, zvýší se T_{2T} asi o 25$^\circ$C.

6.26 Lomové diagramy

Jeden z prvních diagramů tohoto typu pro posouzení vzniku porušení na vrhl Pellini (FAD - fracture analysis diagram). Ve zdrokonalené podobě je uveden na obr. 103. Oblast křehkých lomů je oddělena od oblasti houževnatých lomů (VI) poměrně úzkou přechodovou oblastí. Horní hranici této oblasti tvoří křivka T_{2T}. Porušení při napětí menším jako je mez kluzu může zniknout v oblasti III (pod T_{NPT}) jen za přítomnosti trhlin a vysokých zbytkových napětí nebo pouze velmi dlouhých trhlin (100 až 1000 mm). Limitní napětí pro šíření křehké trhliny pod T_{NPT} (oblast V) je 35 až 55 MPa (z hlediska praktického využití je to teplota příliš nízká). Opinou bezpečnosti provozu nám zaručuje udržování konstrukce nad teplotou zastavení trhliny, tj. vpravo od křivky T_{2T}. Pracuje-li konstrukce v oblasti III nebo IV, musí být maximální délka trhliny, vady nebo vru-bu menší než je kritická délka. Rovněž musí být zabráněno jejich zvětšování subkritickým růstem (vlivem cyklického zatěžování, creepu apod.).

Na obrázku jsou též vyznačeny dva charakteristické body - bod přechodu k elastickému lomu FTE (fracture transition elastic) a bod přechodu k plastickému lomu FTP (fracture transition plastic).

U velkých těles se přechodová oblast posouvá doprava - křivka A-B-C se posune.
více než A.FTE-FTP - tedy přechodová oblast se zužuje. Další posunutí doprava je vyvoláno cyklickým zatěžováním, stárnutím, radiačním ozářením apod.

Konkretizací uvedeného schematu je lomový diagram Pelliního a Puzaka '104' (obr. 104), který byl navržen kolem roku 1960 pro nízkolegované konstrukční oceli na základě analýzy provozních lomů a zkoušek na rozměrných deskách s trhlinami (tehdy ještě bez využití lomové mechaniky). Jako napětí je zde uvažováno nominální napětí. Pouze u malých vad ležících v místech s výraznými tvarovými změnami se uvažuje i příslušný součinitel tvaru.

Při teplotě nižší než \(T_{\text{NDT}} \) dochází k iniciaci trhlin o velikostech naznačených na obrázku pro příslušné hladiny napětí. Při teplotách nad \(T_{\text{NDT}} \) je k iniciaci trhlin těchto velikostí třeba vyšších napětí (podle čářených křivek). (Extrapolace křivek pro napětí vyšší než kruží je provedena pouze pro názornost a nemá pro nás praktický význam.) V této souvislosti je třeba upozornit na nebezpečí lomů i u malých vad v nezřetelných svarových spojích, kde zbytkové napětí dosahuje hodnot až na mezí kruží. K iniciaci lomu pak může dojít při provozní teplotě pod \(T_{\text{NDT}} \) bez ohledu na velikost vnějšího zatížení. Při provozní teplotě nad \(T_{\text{NDT}} \) pak k tomuto lomu nemůže dojít při nízkých vnějších zatíženích. Po ztuhlání na odstranění zbytkových napětí je k iniciaci lomu z malých vad pod teplotou \(T_{\text{NDT}} \) třeba zvyšit napětí až na úroveň mezí kruží.

V tomto diagramu je pak možno definovat čtyři charakteristické tranzitní teploty:

- teplotu \(T_{\text{NDT}} \); jestliže ji provozní teplota poněkud překračuje, nedojde k iniciaci lomu z malých vůbec ani při napětí kolem mezí kruží. Při této teplotě je též základní materiál schopen zastavit šiření malých trhlin při napětí na mezí kruží,

- teplotu uprostřed intervalu mezi \(T_{\text{NDT}} \) a \(T_{\text{FTE}} \); což je přibližně \(T_{\text{NDT}} = 17^\circ\text{C} \). Je-li provozní teplota vyšší než je tato teplota, dojde k zastavení šířící se trhliny, je-li nominální napětí menší než polovina mezí kruží,

- teplotu \(T_{\text{FTE}} \); Je-li provozní teplota vyšší, dojde k zastavení šířící se trhliny.
při nominálním napětí nepřekračujícím mezi kluzu.

- teplotu T_{FP}: Nad touto teplotou může nastat porušení pouze tvárným lomen.

Jak je zřejmé z diagramu, vzniká v teplotním intervalu $T_{NDT} - T_{PFE}$ výrazná odolnost vůči komu - to zjednodušuje otázku zajištění bezpečnosti konstrukce. Volba vhodné oceli pak závisí na nejnižší provozně teplotě a na zvoleném referenčním teplotním kritériu (T_{NDT}, $T_{PFE} + 17 ^\circ C$, T_{PFE} nebo T_{FP}). Při volbě tohoto referenčního kritéria je třeba brát v úvahu i ekonomické ukazatele - náklady na výrobou a zpracování oceli s nižší T_{NDT} totiž vzrostou.

Původní diagram platil pouze pro tloušťky materiálu do cca 50 mm. Pellini později navrhl jeho modifikaci i pro větší tloušťky (do cca 300 mm). Interval teplot mezi T_{NDT} a T_{PFE} se rozšířil teplota T_{FP} se rovněž posunula k vyšším hodnotám. Z diagramu je zřejmé, že podmínka nestabilitu u malých thřelin nezázalí na tloušťce materiálu. Jinak je tomu však v velkých thřelín: podmínky jejich nestabilita závisí na tloušťce materiálu - a jeho rostoucí velikosti se limitní křivky posouvají doprava. Velikost tohoto posuvu je menší než je posuv křivky T_{ZT} pro příslušnou tloušťku. Pro převážnou většinou praktických případů postačí při respektování vlivu tloušťky uvažovat s posuvem limitních křivek o cca $17 ^\circ C$. Větší posuv je nutno uvážit pouze u velkých ved při značných tloušťkách materiálu.

Z obrázku je rovněž zřejmé, že křivka T_{ZT} má vyšší strmost u materiálů menších tloušťek.

6.27 Využití koncepce tranzitních teplot

Této koncepce může být využíváno v zásadě dvojím způsobem: a) přímo, b) nepřímo.

Přímé využití spočívá v bezprostředním porovnání provozní teploty s některou tranzitní teplotou (ktorá může být těž ještě jistým způsobem korigována pro zahrnutí některých dalších vlivů nebo pro zvýšení míry spolehlivosti). Tak tomu je s již dříve uvedenými tranzitními teplotami T_{NDT} nebo T_{ZT}: například ASME Code III (89) využíval do roku 1972 pro posouvání komponent třídy 1 lomový diagram podle Pelliniho a Pusaka. Integráta nádoby byla zaručena, jestliže docházel k tlakování při teplotách vyšších než $T_{NDT} = 33 ^\circ C$. Pro komponenty třídy 2 platilo do roku 1977 kritérium, podle něhož neměla klesnout minimální provozní teplota pod teplotu $T_{NDT} = 17 ^\circ C$. V roce 1977 bylo toto kritérium upraveno na tvar, kdy nejnižší provozní teplota je $T_{NDT} = A$, přičemž A závisí na tloušťce materiálu (vzniká od $17 ^\circ C$ pro tloušťku 70 mm po $50 ^\circ C$ pro tloušťku 350 mm). Velikosti teplotních posuvů A byly získány na základě lomové mechaniky (viz (106)).

Jako další příklad je možno uvést způsob posouvání vůči vzniku křehkého porušení v sovětské normě pro komponenty jaderné energetiky (105). V ní se kritická teplota křehkosti T_{KR} porovnává s teplotou stěny T_s, přičemž:

\[T_{KR} = T_{KO} - \Delta T, \]

je kritická teplota křehkosti materiálu zjistěná na vzorcích s V-vrubačem. Je to výsledkem teploty s teplotou nebo některou teplotou, která charakter houževnatého lomu nebo dosahuje houževnatosti 10^{-3} °Cm².

- 131 -
\(\Delta T \) je bezpečnostní rezerva, která se bere 30°C.
\(\Delta T_{st} \) je bezpečnostní rezerva s ohledem na stárnutí materiálu s varového spoje.
\(\Delta T_N \) je rezerva respektujiící nepříznivý vliv cyklického zatěžování. Pro nízkohlukové a nízkolegoované oceli se bere 26°C.
\(\Delta T_{d} \) vyjadřuje posuv kritické teploty vlivem neutronového záření.

Pokud je \(T_S \leq T_{KR} \), je nutno omezit velikost dovoleného namáhání podle obr. 105 a to pro těleso po vyrobení podle čáry ABCD, pro těleso v provozních podmínkách podle čáry ABSD. Velikost součinitele bezpečnosti \(n_{KL} \) se bere 2 (je-li těleso kontrolované v průběhu provozu) nebo 4 (pokud není kontrolované). Toto omezení se vztahuje na všechny kategorie napětí, tedy i na napětí špičkové (napětí v místě koncentrace).

Jak je z uvedeného zřejmé, neumožňuje koncepce tranzitních teplot bezprostředně kvantifikovat míru odolnosti materiálu nebo konstrukce proti křehkému porušení.

Často je možné se setkat též s nepřímou využitím koncepce tranzitních teplot. To spočívá v posouzení nebezpečí křehkého lomu s využitím koncepce lomové mechaniky, vyústující v určení velikosti potřebné lomové houževnatosti, která se potom (s využitím některého z korelačních vztahů) převádí na požadavek předepsané vrubové houževnatosti při jisté teplotě. Blíže o tom v další kapitole 6.3.

6.3 KONCEPCE LOMOVÉ MECHANIKY

6.3.1 Všeobecné

Posouzení odolnosti konstrukce vůči křehkému lomu vyhádí v zásadě ze tří faktorů, které tuto odolnost (nebo náchylnost) charakterizují. Jsou to napětí, velikost trhliny a lomová houževnatost (při určité teplotě, tluštce materiálu a rychlosti zatěžování). Z toho také plynou tři směry pro zvýšení bezpečnosti konstrukce: snížení napětí, zmenšení velikosti trhlin (kvalitnější výrobou, širší využíváním moderních defektoskopických metod) a užití materiálu s vyšší lomovou houževnatostí (což může být někdy značně ekonomicky nevýhodné).

Druh použitého kriteria (a v něm vystupujících materiálových charakteristik) souvisí úzce s druhem stadia lomového procesu, na které se zaměřujeme (stadium iniciace trhliny, stadium jejího růstu a zastavení).

V dalším budou ukázány podstaty posuzování podle koncepce lomové mechaniky v některých soudobých předpisech a směnicích. Společným rysem všech těchto podkladů je to, že předpokládají v materiálu jistou vadu trhliny (referenční vadu), která musí být spolehlivě zjistitelná soudobými defektoskopickými metodami.
6.32 Předpis ASME Code III '89

Pro komponenty třídy 1 byl v roce 1972 zaveden způsob posuzování odolnosti proti křehkému lomu využívající lineárně elastickou homovou mechaniku. Ve vyšetřovaném místě je uvažována referenční vada podle obr. 106 orientovaná kolmo ke směru největšího hlavního napětí. Její velikost závisí na tloušťce stěny nádoby. Pro tuto vadu jsou vypočítávány velikosti součinitelů intenzity napětí, odpovídající jednotlivým druhům zatížení. Součet hodnot \(K_d \) je potom porovnán s velikostí referenční homové houževnatosti (viz kap. 4.2.5). Konkrétní postup výpočtu se liší pro: 1. nádoby, 2. potrubí, čerpadla a armatury, 3. šrouby. V dalším se zaměříme pouze na nádoby.

Velikost dovoleného přetlaku závisí na tom, zda se předpokládaná vada vyskytuje nebo nevyskytuje v blízkosti změny tvaru (koncentrátoru napětí):

1. není-li tomu tak, potom
 a) pro normální a mimožádné provozní podmínky musí být
 \[
 2 \left(K^p_{Im} + K^u_{I1} \right) < K_{IR} \tag{6.5}
 \]
 b) pro tlakovou zkoušku
 \[
 1,5 \left(K^p_{Im} + K^u_{Ib} \right) < K_{IR} \tag{6.6}
 \]

2. je-li vada v blízkosti tvarové změny, potom je třeba uvažovat těž druhotná membránová a ohybová napětí (teplovní napětí jsou uvažována jako druhotná). Podmínka spolehlivosti
 a) pro provozní podmínky je
 \[
 2 \left(K^p_{Im} + K^u_{I1} \right) + \left(K^p_{I3} + K^u_{I3} \right) < K_{IR} \tag{6.7}
 \]
 b) pro hydrostatickou tlakovou zkoušku
 \[
 1,5 \left(K^p_{Im} + K^u_{Ib} \right) + \left(K^p_{I3} + K^u_{I3} \right) < K_{IR} \tag{6.8}
 \]

Pro shora uvedené součinitele intenzity napětí platí
\[
K^p_{Im} = M_m \cdot \varnothing \quad K^p_{I2} = M_1 \cdot \varnothing - \frac{2}{3} \cdot M_m \cdot \varnothing \quad K^u_{I1} = M_1 \quad \Delta \tag{6.9}
\]

kde indexy \(m, b, t \) se vztahují k membránovým, ohybovým a teplovní napětím a odpovídají součinitelům intenzity napětí. Velikost součinitele \(M_m \) je funkcí tloušťky stěny a napětí vztaženého k mezi kluzu.
Tento předpis [107] je koncipován šfaji, neboť umožňuje řešení několika základních problémů vztahujících se ke křehkému porušení a to:

- posouzení významnosti vady v navrhované konstrukci vyúsťující ve formulaci početně minimální lomové houževnatosti (a tedy ve volbu vhodného materiálu) nebo maximálního provozního namáhání,
- posouzení velikosti vady zjištěné v průběhu výroby nebo provozu,
- určení optimálního intervalu periodických kontrol.

Na první bůh, vztahující se k etapě návrhu konstrukce, se zaměříme nyní. Problematika, týkající se dalších dvou bodů, je obsahem 7. kapitoly.

K uvedenému účelu navrhuje tento předpis rozdělení dílců a prvků konstrukce do čtyř kategorií podle jejich důležitosti a důsledků jejich případného porušení na stav celé konstrukce. Pouze pro některé z nich potom (s přihlížením k jejich přístupnosti a možnosti kontroly a opravy) doporučuje posouzení na základě lomové mechaniky.

Při stanovení velikosti referenční vady se bere v úvahu možný růst trhlin existující zde jako důsledek předcházející výroby. Velikost tento iniciálních trhlin předpokládá tento předpis velmi malé - v závislosti na jejich poloze to je 0,1 až 0,3 mm u povrchových trhlin, u vnitřních (pod povrchových) trhlin pak 0,005 až 0,02 tloušťky stěny. Dále je uvažována maximální přípustná povrchová trhlinová většina o velikosti 8 mm, vnitřní trhliny o velikosti 12 mm.

Jako kriteria je možno použít:

a) K-koncepci, podle níž musí být splněna podmínka

\[\frac{\gamma_m}{K_c} \leq 1,0 \] \hspace{1cm} (6.10)

v níž se součinitel intenzity napětí určuje ze vzorce

\[K_c = \left(\frac{\gamma_1}{\tau_1} \cdot \sigma_1 + \frac{\gamma_0}{\tau_0} \cdot \sigma_0 \right) \cdot Y \sqrt{R} \] \hspace{1cm} (6.11)

v němž znamená:

- \(\gamma \) součinitel tvaru vyjadřující koncentrácii napětí v místě trhliny (nikoliv však v důsledku její existence)
- \(\tau_1 \) součinitel zatížení (předepsaný pro různé druhy zatížení a jejich kombinace - pohyb je v rozmezí od 0,7 do 1,3)
- \(\sigma_1 \) namáhání od jednotlivých zatížení (vždy superpozice membránové a onybové složky)
- \(\sigma_0 \) reziduální napětí (u trhlin orientovaných kolmo k ose svaru se uvažuje 0,8 \(R_g \), u trhlin rovnooběžných s osou svarového spoje pak 0,2 \(R_g \), u vnitřních trhlin, 0,4 \(R_g \) u povrchových trhlin v tupých svarech a 0,8 \(R_g \) u povrchových trhlin v koutových svarech)
- \(\gamma_1 \) součinitel trhliny (uvažuje se 1,2)
- \(\gamma \) korekční funkce vyjadřující geometrii tvaru
- \(\gamma_m \) součinitel materiálu (bere se 1,15)
b) koncepci COD

- pro \(\frac{\sum \sigma_i}{R_e} + \frac{\sigma_p}{R_e} \leq 0,5 \)

se použije

\[
\frac{2 \pi a \gamma R_e}{\sigma_c \cdot E} \left[\left(1 - \frac{\sum (\tau_i, \sigma_i)}{R_e} \right) \left(\frac{\sigma_p}{R_e} \frac{\tau_{10}}{R_e} \right) \right]^{2/3} \leq 1,0 \quad (6.12)
\]

- pro \(\frac{\sum \sigma_i}{R_e} + \frac{\sigma_p}{R_e} > 0,5 \)

se využije

\[
\frac{2 \pi a \gamma R_e}{\sigma_c \cdot E} \left[\left(1 - \frac{\sum (\tau_i, \sigma_i)}{R_e} \right) \left(\frac{\sigma_p}{R_e} \frac{\tau_{10}}{R_e} \right) \right] - 0,25 \right] \leq 1,0 \quad (6.13)
\]

Jak je z bližšího porovnání zřejmé, odpovídají (6.12), (6.13) důležitou uvedenému vztahu (4.85) na str. 79. Ejpikáč trhlin o velikosti \(\sigma \) je ekvivalentní práchozi (centrální) trhlí o velikosti \(\sigma - \sigma \gamma \).

c) koncepci J-integrálu - pokud je k dispozici příslušné řešení pro danou geometrii tělesa a konfiguraci trhliny. Odpovídající podmínka je

\[
\frac{J_T}{J_{1C} / T_m} \leq 1,0 \quad (6.14)
\]

Ve zvláštních případech, kdy hrozí nebezpečí plastického porušení, se doporučuje využít též koncepcí dvou kriterií (viz kap. 4.6).

6.34 Eurocode č. 3 pro ocelové konstrukce

Naše stávající ČSN 73 1401 - Navrhování ocelových konstrukcí - přistupuje k otázce křehkolomové odolnosti velmi zjednodušeným způsobem - prakticky zárukou vrubové houževnatosti při jistě teplotě ve vztahu k nejnižší provozní teplotě. Podstatné podrobnější se této otázce věnuje Eurocode No.3 ve své příloze C [108]. Vzhledem k jeho předpokládanému využití i u nás proto uvedeme jeho základní výchoďiska.

Jako referenční vada je uvažována povrchová poloeliptická trhlna hloubky (pro tloušťku stěny \(t \))

\[
\alpha = \frac{1}{t} \quad (6.15)
\]

kde \(t_0 = 1 \text{ mm} \) s poměrem délek polos a \(\theta = 0,4 \). To znamená, že pro tloušťky v rozmezí 20 - 100 mm je tato hloubka cca 3 - 5 mm.

Na základě metody dvou kriterií [63] (mezní křivky podle 2. alternativy) pro dané namáhání (včetně teplotních a reziduálních napětí) tomu odpovídá velikost požadované lomové houževnatosti materiálu \(K_{mat} \). Při uvážení součinitele bezpečnosti \(\gamma = 1,50 \) z toho plyne velikost lomové houževnatosti pro danou tloušťku materiálu a statickou iniciaci trhliny při (zatím blíže neurčené) teplotě \(T_k \) (obr. 177)

\[
(6.16)
\]

- 155 -
Při této teplotě musí odpovídající lomová houževnatost při rovinné deformaci dosáhnout velikosti K_{IC}. Požadavek rovinné deformace je splněn pro tloušťku (viz (4.31))

$$t_{ps} = 2,5 \left(\frac{K_{IC}}{f_{yt}} \right)^2$$ (6.17)

kde f_{yt} je mez kluzu pro tloušťku t. Vzrůst lomové houževnatosti a klesající tloušťku je zde zahrnut výrazem

$$\frac{K_{IC}}{K_{IC}} = \left(\frac{t}{t_{ps}} \right)^2$$ (6.18)

(tedy poněkud odlišně od (4.34)).

Průběh lomové houževnatosti K_{IC} v závislosti na teplotě je vyjádřen pomocí tranzitní teploty T_{28} (tj. teploty při dosažení vrubové houževnatosti $KV = 28$ J) empirickým vztahem

$$T_k = 1,4 \cdot T_{28} + 25 + 100 \left(\ln K_{IC} - 8,0590 \right)$$ (6.19)

Vliv tloušťky na změnu lomové houževnatosti lze též vyjádřit velikostí teplotního posunu $(T_C - T_k)$, který je potom

$$T_C - T_k = -40 \ln \frac{t}{t_{ps}}$$ (6.20)

* v důsledku vlivu nezanedbatelné rychlosti deformace se pak křivka lomové houževnatosti $K(\varepsilon)$ posouvá doprava o určitou velikost teplotního posunu

$$\Delta = \left(83 - 0,08 \cdot f_{yt} \right) \cdot (\varepsilon)^{1,7}$$ (6.21)

Pro statické poměry je uvažována rychlost deformace 10^{-3} s$^{-1}$, pro růz pak rychlost deformace 1 s$^{-1}$. Tomu odpovídá teplotní posuv cca $40^\circ C$ (vliv meze kluzu není nikterak výrazný).

Pro daný materiál tak dostáváme nejníž možnou provozní teplotu

$$T_s = T_k + \Delta$$ (6.22)

Pro usnadnění práce při tomto posuzování jsou shora uvedené zásady soustředěny do výpočtu lomové houževnatosti K_{IC}

$$K_{IC} = (T \cdot \varepsilon)^{0,55} \cdot f_{yt} + \frac{1}{1,223} \left[N \cdot m^{-3/2} \right]$$ (6.23)

kde T již dříve zmíněný součinitel bezpečnosti,

* součinitel zahrnující vliv velikosti namáhání. Je udán pro tři kombinace lokálních namáhání (tj. včetně vlivu koncentrace napětí) a reziduálních napětí. Velikost tohoto součinitele byly získány aproximací výsledků řady
výpočtě podle metody dvou kriterií.

\[f_{yt} \text{ me} \text{z klu} \text{zu materiálů (s uvažením vlivu tloušťky)} \text{ [MPa]} \]

\[t \text{ tloušťka materiálu [mm]} \]

\[Z (6.19) \text{ je potom mo} \text{žno určit teplotu } T_k \text{ a z (6.23) nejnižší provozní teplo-}
\]

6.35 Návrh VOZ pro ocelové konstrukce [102]

I zde je použito rozšíření konstrukčních částí podle jejich důležitosti na
hlavní, druhotří, pomocné a nenosné. Potom s přihlédnutím k tloušťce součástí, usku-
tečnému šíření a přístupnosti pro kontroly a opravy je křehkolomová odolnost za-
jišťována třemi způsoby:

a) předpisem zaručené vrubové houževnatosti KU 3 ocelí a přídavných materiálů
při minimální provozní teplotě,

b) předpisem zaručené vrubové houževnatosti KV ocelí a svarového kovu při mini-
mální provozní teplotě (požadovaná hodnota KV se určí přístupem lomové mecha-
niky),

c) posouzením růstu trhliny při cyklickém zatěžování a její velikosti z lomové
houževnatosti ocelí, svarového kovu nebo teplem ovlivněné oblasti spoje (podle
umístění vady).

ad a) Tyto případy přicházejí v úvahu prakticky pouze u pomocných a nenosných
konstrukčních částí a to ještě pouze do tloušťek cca 35 mm.

ad b) Jako referenční vada je uvažována eliptická trhлина o velikosti \(a_p = 10 \) mm
pro tloušťky menší jako 40 mm, o velikosti \(a_p = 0,25 \) t pro tloušťky mezi 40 a
100 mm, o velikosti \(a_p = 25 \) mm pro tloušťky nad 100 mm.

Jako napětí působící v místě trhliny se bere

\[\sigma_T = \phi \eta + \sigma_R \] \hspace{1cm} (6.24)

kde je \(\eta \) tvarový součinitel,

\(\eta \) nominální napětí,

\(\eta \) zbytkové napětí po svařování dosahující 0,8\(R_e \), vlivem zatěžování po-

někud relaxují, v žíhaném spoji se uvažuje o velikosti 0,3 \(R_e \).

\[\sigma_T / R_e \leq 1,0 \] je požadovaná lomová houževnatost

\[K_{IP} = \sigma_T / \sqrt{2} R_e \] \hspace{1cm} (6.25)

V pružně plastické oblasti pak

\[K_{IP} = R_e / \sqrt{2} \sigma_T \left(2 \frac{\sigma_T}{\sigma_y} - 1 \right) \] \hspace{1cm} (6.26)

což je zřejmě využití dříve uvedených vztahů (4.94), (4.95) a (4.93) na str. 85.

Požadovaná hodnota vrubové houževnatosti při nejnižší provozní teplotě se po-
tom stanoví z empirického výrazu

\[K_{IP} = 4,5 \sqrt{[KV]} \] \hspace{1cm} [MPa m^{1/2}] \] \hspace{1cm} (6.27)

(který byl též již uveden v kap. 4.24).

\[\sqrt{\frac{\text{odklad}}{\text{odklad}}} \]

\[E = 205 \text{ 000 } \text{ mPa} \]

\[- 157 - \]
ad c) Je známo, že ve svářovaných konstrukcích se vyskytují vady nezanedbatelných rozmerů i při příznivě technologicky disciplině výroby a při stoprocentní nedestruk-
vitivé kontrole svarových spojů. Při cyklickém zatěžování mohou tyto trhliny růst
a hrozí nebezpečí křehkého porušení. Na základě zkušeností jsou v tomto návrhu
uvedeny odhadované velikosti počátečních povrchových a vnitřních trhlin (v závis-
losti na tloušťce materiálu). U výkovů a vývalů se pohybují odhady v mezích
0,2 až 0,4 mm, u odšiků 0,5 - 1,5 mm (povrchové) a 1 - 3 mm (vnitřní vady). Pro
svarové spoje V a X v klasifikačním stupni 3 se odhadují povrchové vady s velikos-
ti 0,3 - 0,5 mm, vnitřní 2 - 5 mm.

Pro výpočet růstu únavové trhliny se použije stejný postup jako v kap. 7.5.

Při posouzení možnosti vzniku křehkého porušení jsou uvažovány tři oblasti:
I. oblast LEIM, kdy celkové napětí (včetně vlivu koncentrace a zbytkového napětí)
 nepřekračuje mez kluzu materiálu,
II. oblast EPLM, kdy dochází k lokálním pružně plastickým deformacím, při čemž sku-
tečné napětí nepřekračuje mez kluzu. Požadovaná lomová houževnatost \(\sigma_{cl} \) ply-
ne z (6.26). Pro použitý materiál se doporučuje brát hodnotu pro 90 % pravděpodob-
nost při dané teplotě.
III. oblast plastického porušení, kdy skutečné napětí nepřekročuje mez napětí
\(R_{em} = 0,5 (R_e + R_m) \). Kritická velikost trhliny se určí metodou dvou kritérií.

Jedním z těchto způsobů zjištěná kritická velikost trhliny se podělí součini-
telem bezpečnosti (1,4 - 3 podle důležitosti konstrukční části a spíše namáhání
- statické, únavové, rázové) a získá se tak přípustná velikost trhliny.

6.36 Britský předpis PD 6493 [27]

Tento předpis, založený na filozofii posuzování vhodnosti svářované konstruk-
ce pro daný účel je poměrně podrobným předpisem obsahujícím obecnou metodiku po-
souzení různých druhů vad s ohledem na různé mezí stavě porušení. Zahrnuje čtyř
postupy, týkající se
1. posouzení přípustnosti zjištěné vady (podrobněji o tom je pojednáno v 7. kap),
2. stanovení velikosti přípustné předpokládané vady. Této otázce se budeme věnovat
zde. Na rozdíl od drží uvedených postupů však není v tomto případě předem dána
velikost předpokládané (referenční) vady. Výpočtem získané rozměry vady mohou
být použity jako základ pro určení mezí přípustnosti vad zjištěných defektsko-
pickou kontrolou.

Pro stanovení přípustné velikosti předpokládané vady se musí být ve vědě
proměnnost materiálových vlastností, vyšší hodnoty napětí než jsou návrhové hodno-
ty, nepřesnost metod nedestruktivní kontroly a pouze jistá pravděpodobnost zjiště-
ní vady. Na rozdíl od posouzení v 7. kap. je zde nutno tedy vzít v úvahu širší roz-
sah proměnných veličin a zahrnout větší množství možných případů.

V použitých hodnotách mechanických charakteristik musí být zahrnuty tolerance
příslušných zkoušek, systematické rozdíly mezi vlastnostmi zjištěnými na zkouš-
čkách vzorcích a na skutečné konstrukci a náhodný rozptyl vlastností v různých
místech konstrukce.

V použitých hodnotách napětí musí být zahrnuty tolerance měření, vliv tvaro-
vých nepřesností (přesazení svaru, ovalita, svarové deformace aj.) a případné ne-
jistoty v určení zatižení.

V případech, kdy lze proměnnost materiálových vlastností a namáhání vyjádřit

- 158 -
pomocí statistických charakteristik (např. hustotou pravděpodobnosti), je možno též příslušné velikosti vady přidalit i odpovídající pravděpodobnosti jejího výskytu.

7. METODIKA POSOUVENÍ ZJIŠTĚNÉ VADY TYPU TRHLINY

7.1 ČVOD

Z požadavků na spolehlivost konstrukce plyne, že přítomnost vad nesmí zhoršit příslušné charakteristiky pod přípustnou mez. Z této podmínky také vyplývá příslušné velikost přípustné vady.

Velikost přípustné vady je možno v zásadě stanovit dvěma postupy:
1. na základě příslušné normy jakosti, hodnotící typ, tvar, množství, velikost a rozložení vad. V oblasti svážování se na základě nedestructivní defektoskopie přířazují svarovým spojům odpovídající klasifikační stupně. V závislosti na účelu a náročnosti konstrukce je pro ni předepisován rozsah defektoskopické kontroly a klasifikační stupeň, podmiňující její přezvestí.

Podstatně kvalifikovanější odpověď na naznačené problémy poskytne přístup 2. založený na filozofii posuzování vhodnosti konstrukce pro daný účel ("fitness for purpose"). Při hodnocení je uvažována interakce - geometrie konstrukce, především svarového uzlu, - stavu napjatostí (včetně zbytkových napětí), - typu, orientace, tvaru a velikosti vady, - mechanických vlastností materiálu pro uvažované mezní stavy, - provozních podmínek.

Podstatnou tohoto přístupu je komplexní analýza konkrétní vady z hlediska zatížení a únosnosti konstrukce. Tak se může zdůvodnit přípustnost větších vad než dovolují normy jakosti a to při nesnížené spolehlivosti konstrukce. Odpadnou tak nejen náklady na opravu, ale sníží se též nebezpečí plynoucí z nesnížených oprav výrobku.
7.2 DRUHY VAD

Vadou se rozumí každá úchytlka rozměru, tvaru, polohy, hmotnosti, vzhledu, struktury a vlastností materiálu od jejich předepsané hodnoty.

Podle závažnosti se rozlišují

a) vady přípustné - mají takové úchylky, které technické normy a technické podmínky dovolují, aniž by se musely odstranit opravou,

b) vady opravitelné - lze je vhodným zásahem (výslovně dovoleným technickými normami, technickými podmínkami nebo po vzájemné dohodě) buď opravit na přípustnou míru nebo zcela odstranit,

c) vady nepřípustné - nelze je odstranit opravou nebo je jejich oprava podle příslušných technických norm nebo technických podmínek nepřípustná.

Podle charakteru se rozlišují vady rozměrů, tvaru, polohy, hmotnosti, struktury, necelistnosti, povrchu aj. Jako necelistnosti jsou hodnoceny vady projevující se přerušením kovové hmoty: zahnutí bubliny, pory, městy, studené spoje, trhliny.

Podle své konfigurace se rozlišují vady

a) plošné (trhliny, neprůvary, studené spoje, vruby, přesahy). Těmto vadám je v dalším textu věnována pozornost.

b) prostorové (dutiny, pevné směsí).

Prostorové vady vycházející na povrch jsou posuzovány jako vady plošné.

Novořízne-li o přípustné vadě, můme tím na mysli vadu, která nemůže způsobit porušení konstrukce za jejího provozu (včetně režimu spouštění a odstavování) a nezkratí její životnost pod plánovanou dobu. V některých případech je vhodné u přípustných vad (především s ohledem na dalekosáhlé a nebezpečné důsledky případné poruchy a na neuplné znalosti o zatížení, namáhání nebo růstu vady) předepsat jejich periodické prohlídky.

I vada při přívodních provozních podmínkách nepřípustná, může být po určité dobu provozována za změněných provozních podmínek (změna namáhání, pracovní teploty ap.). Takovéto období je obvykle krátké, v jeho průběhu se rozhoduje o budoucím osudu vady nebo se vada opravuje.

Je-li vada nepřípustná a je rozhodnuto ji opravit, musí být pro tuto činnost pracován zvláštní předpis a oprava musí být vykonána pod dohledem zvláštního technika. Opravené místo je třeba podrobit pečlivé nedestruktivní kontrole. Nutno těž posoudit, zda vlastnosti opraveného místa nesnází užitně vlastnosti a životnost konstrukce. Opravené místo je třeba periodicky kontrolovat.

- 160 -
Pro vadu v jednotlivých
stádích jejího růstu použi-
je ne následující pojm

(oir. 108):
- dovolená velikost a_D
vady je udávána příslušnými
předpisy a pravidly - přede-
vším podle osvědčených pravidel pro daný výrobek, ale též i na základě provozní
kontroly a aplikace lomové mechaniky ("přípustná velikost předpokládané vady").

Prostředky současné necestovní defektoskopie je možno bezpečně identifikovat
vadu až od určité velikosti. Dovolená velikost vady tedy musí být větší než toto
minimum.

- limitní velikost vady a_L určuje mez, pod kterou není nutno vadu opravovat.

Svým charakterem tedy také patří k kategorií přípustných vad. Stanoví se pomocí
zákonitosti lomové mechaniky ("přípustná velikost zjištěné vady"). Smyslem jejího
určování je zabránit neúčelným opravám, které mohou někdy vést spíše ke zhoršení
výsledné kvality nebo dokonce ke znečištění výrobku.

- velikost a_0 vady na začátku cyklického zatížování může být též ztotožnována
s limitní velikostí vady. Za příznivých podmínek dochází pak k růstu vady.

- velikost a_K vady na konci doby života resp. po ukončení působení zatížení
cyklického charakteru. Stanoví se buď ze zadaného a_0 a požadovaného počtu kmitů
nebo ze známé kritické velikost a_K a potřebného součinitele bezpečnosti.

- kritická velikost a_{KR} může být různá v závislosti na uvažovaném druhu mezního
stavu. V dalším textu však budeme uvažovat pouze mezni stav křehkého porušení.

Podle důležitosti konstrukce, provozních podmínek a stupně znalosti vstupnich údajů se obvykle volí

$$\frac{a_{VR}}{a_K} = 1 \text{ až } 4 \quad \frac{a_0}{a_L} = 1 \text{ až } 2$$

(7.1)

7.3 VŠEOBECNÝ POSTUP PŘI POSUZOVÁNÍ

7.3.1 Přehled

Posouzení probíhá v následujících krocích:
1. určení typu vady - plošná nebo prostorová vada,
2. shrnutí potřebných vstupních údajů,
3. určení efektivní velikosti vady,
4. stanovení kritické velikosti vady pro možné způsoby porušení (křehkým lomenem,
šroubovou, nadměrnou plastickou deformací ap.),
5. posouzení subkritického růstu, tj. zjištění, zda může vada v průběhu doby živo-
ta konstrukce zvětšit svou velikost až na kritickou velikost některým z mecha-
nismů subkritického růstu (šroubovou, štěrbinovou korozí, korozní šroubovou, cresenti),
6. celkové zhodnocení.
7.3.2 Potřebné vstupní údaje

Důležitými údaji jsou:
- poloha, orientace a velikost vady,
- tvar a rozměr konstrukce a svarového spoje,
- napětí (jakéhokoliv původu) a teploty a to i pro přechodové stavy,
- mez kluzu, mez pevnosti v tahu, modul pružnosti,
- křivky životnosti pro únavu a únavu za koroze, zákonitosti růstu trhliny,
- lomová houževnatost, kritické rozrůstání trhliny,
- mez tečení, mez pevnosti při tečení, růst trhliny při creepu, údaje o interakci
 únavy a creepu.

aby bylo posouzení významnosti vady na bezpečné straně, je třeba též uvažovat
 chybu metody a chybu měření při defektoskopickém vyšetřování. Velikosti této
 chyby a jejich závislosti by měly být uvedeny ve zpracovaném posouzení.

Potřebné vstupní údaje musí být v úvahu deformací a teplotní historii
 materiálu konstrukce a vliv prostředí. Při posouzení musí být též uvažována ze-
 těžování v průběhu montáže a zkušenosti, vliv lokálního zatížení, vliv případného
 nepoužití a vliv odchylek zatížení nebo teploty od předepsaných režimů v průběhu
 provozu.

Shora uvedený příklad údajů je možno považovat za typický. V některých pří-
 padech však může být zbytečně rozsáhlý, jindy pak zase nedostačující.

Kvalita posouzení je do značné míry určována přesností a úplností všech
 vstupních informací. To se týká především informací o vadách o jejich charakte-
 ru, tvaru, velikosti a poloze. U vnitřních vad je ziskání těchto údajů podstatné
 náročnější než u vad povrchových. Dochází tak ke zvýšeným náročům na úroveň de-
 fektoskopické kontroly.

Materiálové údaje je nutno především získávat experimentálně se zahrnutím
 vlivu použité technologie a případné degradace vlastností v důsledku provozu
 konstrukce. Pouze v krajním případě je možno užít různých empirických podkladů
 vždy však s uvážením míry jejich spolehlivosti.

7.3.3 Efektivní velikost plošné vady

Postup jejího určení se skládá z několika kroků:
1. promítat vady

 Jedná-li se o plošnou vodu, promítá se obvykle do roviny kolmé ke směru nej-
2. idealizace a lokalizace vady

 Všeobecně přijímou praxí je uvažování eliptického nebo polokouzelného
 tvaru trhliny (to také odpovídá fraktografickým vyšetření). Pro takovéto tvary
 mohou být snadno využity zákonitosti lomové mechaniky. Elipsy (půdélipsy) jsou
 vepsány do obdélníka, jehož strany jsou rovnoběžné s povrchem a kolmé k němu
 (obr. 110).
3. vzájemné ovlivnění vad

 U skupiny vad je nutno posoudit, zda nedochází k jejich vzájemnému ovlivňo-
 vání. Jestliže v případě dvou vad typu trhliny způsobí jedna vada u druhé vady
 výraznější zvýšení součinitele intenzity napětí (např. o 30 %), uvažují se efek-
tivní rozměry obdélníka opsaného oběma vadám (obr. 111). Toto pravidlo se použije i pro větší počet vad než dvě.

4. rekategorizace vady

Tato otázka může přicházet v úvahu např. při zatěžování v přechodové oblasti mezi křehkým a houževnatým porušením. Vznikající značné plastické deformace mohou vést až k plastickému kolapsu. V tomto případě dochází k rekategorizaci vady: povrchová vada se uvažuje jako průchozí přes celou tloušťku, vnitřní vada se považuje za povrchovou nebo za průchozí (podle toho, který "mášek" nesplňuje toto kriterium).

Průměty vady do rovin kolmých ke směru největšího hlavního napětí:

a) příklad tupého svaru,

b) příklad spirálové svařené roury

Obr. 109

Obr. 109
7.4 KRITICKÁ VEĽIKOST VADY

7.4.1 Všeobecně

Zde se zaměříme pouze na stanovení krítké velikosti vady s ohledem na nebezpečí křehkého porušení podle několika celosvětově uznávaných předpisů. Příslušný postup probíha v několika krocích:

1. analýza napětí:
 - pro zatížení silového a deformacního původu se určí složky jednotlivých druhů napětí,
 - tyto druhy napětí se zařadí do příslušných kategorií,
 - stanoví se průběh výsledného napětí po průřezu v místě vady,

2. určení oblasti lomové mechaniky a vhodného kritéria,

3. zjištění potřebných materiálových charakteristik.

4. výpočet krítké velikosti vady. U některých koncepcí (např. COD, JIC) se takovýmto způsobem určí velikost centrální (průchozí) trhliny. Eliptická vada požadovaného tvaru a polohy se potom stanoví z podmínek ekvivalence hodnot odpovídajících součinitelů intenzity napětí (viz např. obr. 112).

7.4.2 Posouzení podle ASME XI [26]

Tento předpis byl vytvořen pro posuzování vad v zařízeních pro jadernou energetiku, možnosti jeho využití jsou však širší. Použitá metodika je založena na LELM:
- pro popis růstu trhliny při cyklickém zatěžování je použit Paris-Erdoganův zákon – viz (5.7) a obr. 65.
- kriterium pro stanovení krítké velikosti trhliny za normálních provozních podmínek je lomová houževnatost při zastavení trhliny KIA (její průběh v závislosti na teplotě je totožný s průběhem referenční lomové houževnatosti
\[K_R = \text{viz kap. 4.25}. \] Takto určená kritická vada musí být 10 x větší než vada na konci doby života.

- určení kritické vady pro nouzové a havarijní podmínky je navíc doplněno podmínkou pro iniciaci trhliny (využívající lomové houževnatost \(K_{IC} \)).

7.4.3 Posouzení podle PD 6493 [27]

V porovnání s ASME XI je tato směrnice podstatně obsáhlejší co do počtu druhů uvažovaných mezních stavů i typů vad. Vedle porušení křehkým lomem a únavou (kterým je věnována ne větší pozornost) jsou zde uvedeny též nejžádoujší zásady navrhování konstrukcí uždánych proti nadměrné plastické deformaci, korozí, erozi, korozní únavě, korozí pod napětím, strádá stability tvaru a creepu. Posuzují se vady plošné (trhliny, neprůvody, studené spoje, vruby, přesahy) i prostorové (dutiny, pevné věmstky).

Uvedené metody jsou použitelné pro stanovení vad v tavných svarových spojích s tloušťkou nad 10 mm.

Při posouzení odolnosti proti křehkému porušení jsou zde využity zákonitosti jak LELM tak i EPLM (koncepce COD).

Vstupními údaji jsou:
- napětí
- určí se průběh výsledného největšího hlavního napětí (tj. součet primárního, sekundárního a špičkového napětí) po tloušťce v místě výskytu vady. Jedná-li se o něříhanou konstrukci, předpokládá se zbytková napětí (zařazená v kategorii sekundárních napětí) rovná mezi kluzu té oblasti spoje, v níž leží vada (základní materiál, tepelně ovlivněná oblast, svarový kov). U konstrukce žíhané na odstraňnění prutí nemusí být zbytkové napětí nulové.

Je-li toto výsledné napětí nižší než mezi kluzou, linearizuje se jeho přiběh v místě trhliny, aby bylo možné získat tahovou a ohybovou složku napětí (viz již dříve uvedený vztah (4.20)). Překračuje-li výsledné napětí ve vyšetřovaném průřezu mezi kluzou, uvažuje se při dalším posuzování vady nejvyšší hodnota tohoto výsledného napětí a to bez ohledu na to, ve kterém bodě průřezu toto napětí působí (třeba a mimo oblast trhliny).
- efektivní velikost trhliny – viz kap. 7.3.3
- lomová houževnatost

Další postup závisí na velikosti největšího výsledného hlavního napětí:
1. je-li menší než mezi kluzou, je možno užít LELM. Potom považujeme vadu za přípustnou. Je-li

\[K_I \leq 0,7 \ K_{IC} \] (7.2)

Konstanta 0,7 zajišťuje součinitele bezpečnosti pro napětí o velikosti 1,4 (tj. 1/0,7) nebo součinitele bezpečnosti pro délku trhliny 2 (tj. (1/0,7)/2 a to pro případy, kdy je trhliny v poli tahového napětí a její rozměry jsou malé vůči rozměrům tělesa.

2. v opačném případě se využívá koncepce COD.

Vada se považuje za přípustnou, pokud je její parametr \(\sigma \) menší než přípustný parametr \(\sigma_p \). Parametře efektivní vady \(\sigma \) se určí

- 165 -
- pro trhlinu přes celou tloušťku (obr. 110a) jako \(a = \frac{1}{2} l \),
- pro povrchovou vadu (obr. 110c) při \(t/s < 0,9 \) pomocí závislosti na obr. 112, popisujících ekvivalenci součinitelů intenzity napětí \(K_I = K_I \),
- pro centrální trhlinu
 \[
 K_I = \sigma \sqrt{\pi a}
 \]
 (7.3)
- pro povrchovou trhlinu
 \[
 K_I = \frac{\sigma}{\rho} \cdot Y_R \cdot Y_{VP}
 \]
 (7.4)

kde \(Y_R \) je součinitel vyjadřující vliv konečných rozměrů tělesa – viz (4.17),
\(Y_{VP} \) je součinitel vyjadřující vliv volného povrchu (přílehlého stěny) – viz (4.17).

Obdobné relace bylo možno uvést i pro jiné typy trhlin.

Pro parametr přípustné vady platí

\[
\overline{a_m} = C \cdot \frac{a}{\overline{t_e}} = C \cdot \frac{a}{R_e}
\]
(7.5)

Pro určení konstanty \(C \) je rozhodující velikost součtu primárních a sekundárních napětí (avšak bez zbytkových napětí):

A) je-li tento součet menší než \(2R_e \), pak

a) při

\[
\delta_v \leq \frac{1}{2} R_e \quad \text{bude} \quad C = \frac{1}{2 \pi \left(\frac{\delta_v}{R_e} \right)^2}
\]
(7.6)

b) při

\[
\delta_v > \frac{1}{2} R_e \quad \text{bude} \quad C = \frac{1}{2 \pi \left(\frac{\delta_v}{R_e} - 0,25 \right)}
\]
(7.7)

V těchto výrazech znamená \(\delta_v \) výsledné napětí (včetně zbytkového napětí).

B) je-li shora uvedený součet větší jako \(2R_e \), je třeba získat velikost výsledné deformace pružně plastickou analýzou (přesnou nebo přibližnou – např. Neuberonovou metodou – kap. 5.432). Bezrozměrný parametr \(C \) potom je (podle (4.85))

- pro ferritické oceli
 \[
 C = \frac{1}{2 \pi \left(\frac{\delta_v}{R_e} - 0,25 \right)}
 \]
(7.8)
 - pro ostatní materiály
 \[
 C = \frac{1}{2 \pi \left(\frac{\delta_v}{R_e} \right)^2}
 \]

Příslušné závislosti jsou graficky uvedeny na obr. 113.

7.5 ZBYTKOVÁ ŽIVOTNOST

K posouzení chování plošných vad (povrchových i vnitřních) lze využít zákoni- tostí LEM popsaných v kap. 5.22 - 5.23. Toutéž metodikou se ale též posuzuje
povrchové prostorové vady – což je tedy pro ně konzervativní přístup. Při hodnocení životnosti vnitřních prostorových vad se vychází z výsledků únavových zkoušek vzorků s umělými a přirozenými vadami.

Jedním ze základních vstupních údajů pro toto posouzení je spektrum rozkmitů napětí. Vyšetřuje se vhodnou analýzou časového průběhu napětí – zadaného, předpokládaného nebo experimentálně vyšetřeného (viz kap. 5.31). Výsledkem je korelační tabulka četností rozkmitů napětí s jejich příslušnými středními hodnotami. Při jejím dalším využití je nutno vztít zřetel na několik skutečností:

- zákon rychlosti růstu trhlin (5.7) je obvykle vyřešován pro měřivý knit napětí,
- k růstu trhlin dochází až za nadprahových podmínek,
- v důsledku svafořování působí v oblasti trhlin nezanedbatelná zbytková napětí,
- při střídavém knitn napětí se jako efektivní projevuje pouze jeho část.

Vliv těchto skutečností na rychlost růstu a na velikost prahové hodnoty rozkmitu součinitele intenzity napětí je respektován užitím různých korekcí.

Pro výpočet velikosti rozkmitu součinitele intenzity napětí (4.20) je pak třeba ještě získat hodnoty tahových a ohnivých složek rozkmitů napětí.

I v této oblasti posouzení je patrný vývoj v šifre používaných směrnicích a to jak co do hloubky, tak i do šířky jejich propracování.

Tak např. ve starší vydání AIME XI [26] nebyl zahrnován v zákonu rychlosti růstu vliv asymetrie knit napětí, v novějších verziích je to však již respektováno (viz obr. 68). Zbyvající tři shora uvedené vlivy v něm nejsou uvažovány.

Podrobnější údaje poskytují směrnice PD 6493 [27] nebo práce zaměřené na její modernizaci (jako je např. [109]). Především zde jsou (pro ulokové a C-Xn oceli) zavedeny prahové hodnoty rozkmitů součinitele intenzity napětí:

- v [27] to bylo pro šihané svarky (viz obr. 67)
 \[
 \Delta K_p = 6 - 4,5 \cdot r \quad (\Delta K_p = \text{MPa} \cdot \text{m}^{1/2})
 \] (7.11)
- podle [109]: to je pro \(0 \leq r \leq 0,5\)
 \[
 \Delta K_p = 5,4 - 6,8 \cdot r
 \] (7.12)
a pro \(r > 0,5\) pouze \(\Delta K_p = 2 \text{MPa} \cdot \text{m}^{1/2}\).

Působení zbytkového napětí \(\sigma_r\) je (7.12) respektováno použitím součinitele efektivní asymetrie knit \(r = r_{ef}\).
- je-li \(S_r + \Delta S < R_e \), je
\[
\frac{r_e}{S_{n_{\text{ml}}}} = \frac{S_r}{S_r + \Delta S}
\] \hspace{1cm} (7.13)
- je-li \(S_r + \Delta S \geq R_e \), bude
\[
\frac{r_e}{S_{n_{\text{ml}}}} = \frac{R_e - \Delta S}{R_e}
\] \hspace{1cm} (7.14)

Při pochybnostech o skutečné velikosti zbytkového napětí se doporučuje předpokládat, že je rovno mezi kluz.

Jedná-li se o střídavý kmit napětí, potom se podle [27] i [109] uplatňuje pouze tahová část kmitu, tedy rozkmit efektivního součinitele intenzity napětí je
\[
\Delta K_{e_t} = \frac{\Delta K}{1 - r}
\] \hspace{1cm} (7.15)

Ve [109] je v tomto případě ještě navíc respektován vliv prahové hodnoty, takže
\[
\Delta K_{e_t} = \frac{\Delta K - \Delta K_p}{1 - r}
\] \hspace{1cm} (7.16)

S uvažením, že (viz 4.45)
\[
\frac{\Delta a}{\Delta N} = C \cdot (\frac{a}{a_0})^m
\] \hspace{1cm} (7.17)
dostaneme integraci (5.7)
\[
\Delta N = \frac{1}{C \cdot \lambda^{m/2} \Delta S^m} \int 0_k \left(\frac{\phi_o}{\frac{d}{a}} \right)^m \frac{d a}{d a_{\text{ml}}}
\] \hspace{1cm} (7.18)

Pokud \(\phi_o, \gamma \) nezávisí na délce trhliny a když \(m \neq 2 \), je
\[
\Delta N = \frac{1}{C \cdot \lambda^{m/2} \Delta S^m} \left(\frac{\phi_o}{\gamma} \right)^m \left(\frac{2 - m}{a_0^2} - \frac{2 - m}{a_{KZ}^2} \right) \cdot \frac{d}{(a - 2)\Delta a}
\] \hspace{1cm} (7.19)

V opačném případě, stejně jako při uvažování efektivního součinitele intenzity napětí (7.16), je vhodné použít přírůstkovou metodu, kdy
\[
\frac{\Delta a}{\Delta N} = \frac{\Delta a}{\Delta N}
\] \hspace{1cm} (7.20)

Potom se volí malé přírůstky délky trhliny \(\Delta a \) a počítá se potřebný počet kmitů pro tento nárůst. Při tomto postupu též odpadá nutnost předpokladu o tvaru trhliny (o velikosti poměru délky polos elipsy), neboť je možno využít skutečnosti, že
\[
\frac{\Delta a}{\Delta a_{\text{ml}}} = \left[\left(\frac{\Delta K}{\Delta K_0} \right)^m \right]
\] \hspace{1cm} (7.21)

Přesnost výpočtu potom závisí na počtu zvolených přírůstků (při počítačovém zpracování je vhodné volit jejich počet vysoký - např. 1000). Je-li nutno užít z uživatelských důvodů pouze malý počet přírůstků \(p \), doporučuje se jejich velikost
\[
a_i - a_{i-1} = \Delta a = \left(\log a_i - \log a_{i-1} \right) / p
\] \hspace{1cm} (7.22)

- 168 -
8. PEVNOST A ŽIVOTNOST PŘI CREEPU

8.1 ÚVOD

Problematika creepu (tečení) materiálu, tj. s časem probíhajícího růstu plastické deformace při výšších homologických teplotách, je intenzivně studována v posledních zhruba pěti desetiletích. Její důležitost vyniká především v souvislosti s navrhováním komponent tepelně energetických a některých chemických zařízení, pracujících za vyšším teplot (při stálém i proměnném namáhání) často až desítky let. S dostatokou zárukou musí být zajištěna jejich spolehlivost vyjádřená jak dlouhou dobou jejich života, tak velikostí nárůstu celkových deformací. Fyzikální podstatě probíhajících procesů byla věnována pozornost v Ī1, str. 173 - 189. Zde se naopak zaměříme na základní otázky související s posuzováním pevnosti a životnosti při creepu.

8.2 ZKOUŠKY TEČENÍ A REGRESNÍ ZÁVISLOSTI

Při creepu dochází k nárůstu časově závislé plastické deformace při konstantní teplotě a konstantním napětí. Takto získaná creepová křivka (obr. 114) charakterizuje jedno, dvě, případně tři stadia creepu:
I. - stadium primárního (transznitého) creepu,
II. - stadium sekundárního (stacionárního) creepu, kdy se rychlost creepu \(\dot{\varepsilon}_g = \frac{d \varepsilon_g}{dt} \) prakticky nemění s časem,
III. - stadium terciárního creepu končícího lomem při dosažení mezní deformace \(\varepsilon_m \) za dobu \(t_m \).

Regresní analýzou výsledků creepových zkoušek je možno získat závislosti mezi jednotlivými veličinami (jak je kvalitativně naznačeno na obr. 115) (např. ī17).

Obr. 114

Obr. 115

- 169 -
Nejběžnější informace, uváděná v materiálových listech o creepovém chování materiálu, jsou
- mezi pevnosti při tečení (= napětí, způsobující při dané teplotě T porušení za stanovenou dobu t_0); takto získané křivky životnosti mohou být prezentovány různým způsobem (obr. 116),

![Diagram](image)

Obr. 116

- mezi tečením (= napětí, při němž je při dané teplotě dosaženo předepsané trvalé deformace za stanovenou dobu (obr. 117); často se tato trvalá deformace volí o velikosti 1 %.

![Diagram](image)

Obr. 117

Pro extrapolaci experimentálních výsledků na delší dobu života byla navržena řada metod (velmi známá je metoda Larsea a Millera). Získání hodnotových výsledků je však podmíněno splněním některých předpokladů.

Z analýzy experimentálních výsledků plyne též řada empirických vztahů: na ukázku budou uvedeny pouze některé z nejznámějších:

a) rychlost deformace při stacionárním creepu při konstantní teplotě:

Norton \[\dot{\varepsilon}_s = B_1 \cdot \beta^m \] (8.1)

Dushman a j. \[\dot{\varepsilon}_s = B_2 \cdot \exp \left(B_3 + B_4 \cdot \beta \right) \] (8.2)

Nadai \[\dot{\varepsilon}_s = B_5 \cdot \sinh \left(B_6 \cdot \beta \right) \] (8.3)

b) rychlost deformace při stacionárním creepu v závislosti na teplotě

\[\dot{\varepsilon}_s = a \cdot \beta^p \] (8.4)

\[\dot{\varepsilon}_s = a \cdot \exp \left(B \cdot \beta \right) \] (8.5)

c) deformace v závislosti na čase (pro I. a II. stadium creepu)

Andrade \[\varepsilon = \varepsilon_0 + \beta \cdot \beta + K \cdot t \] (8.6)
8.3 KONSTITUTIVNÍ ROVNICE

8.3.1 Obecně

Shora uvedené vztahy (8.1) – (8.6) jsou použitelné tehdy, jestliže je namáhání (a tedy i zatížení) konstantní. V případech, kdy tomu tak není – kdy se za provozu mění jak teplota, tak namáhání (a to je u reálných součástí obvyklé), lze využít některé z teorií creepu. Tyto teorie umožňují posoudit chování tělesa za proměnného namáhání a libovolného stavu napjatosti a to na základě vstupních údajů získaných při konstantním namáhání a jednosměrném stavu napjatosti. Obecně je možné popsat vztah mezi napětím, deformací a jejich rychlostmi při \(T = \text{konst.} \) ve tvaru

\[
F(\varepsilon, \dot{\varepsilon}, \varepsilon, \dot{\varepsilon}) = 0
\]
(8.7)

Příslušné závislosti jsou však velmi složité; pro zjednodušení se proto v (8.7) uvažují pouze některé veličiny a formulují se hypotézy o jejich vzájemných vztazích. Uvedeme ve stručnosti některé nejčastěji používané teorie creepu a to pouze pro jednosměrnou napjatost. Dále je třeba zdůraznit, že platí jen pro kvazistacionární změny – při rychlých změnách nevystihují modely správně přechodové jevy.

8.3.2 Teorie stárnutí

V tomto případě se předpokládá, že při \(T = \text{konst.} \) je k dispozici závislost

\[
F(\varepsilon, \sigma, t) = 0
\]
(8.8)

kde celková deformace je dána součtem okamžitě deformace (která může být pružná nebo pružno-plastická) a deformace creepem:

\[
\varepsilon = \varepsilon_{\sigma} \frac{\sigma}{E} + \varepsilon_{\varepsilon} \frac{\dot{\varepsilon}}{\dot{\varepsilon}}
\]
(8.9)

Ukazuje se, že křivky tečení jsou si podobné, tedy že

\[
\varepsilon_{\varepsilon} \frac{\sigma}{E} + \varepsilon_{\varepsilon} \frac{\dot{\varepsilon}}{\dot{\varepsilon}} = \sigma(N(t)) = \sigma_{n} \cdot \sigma(t)
\]
(8.10)

Po derivaci dostaneme (při \(\sigma = \text{konst.} \))

\[
\dot{\varepsilon}_{\varepsilon} = \sigma_{n} \frac{dN}{dt}
\]
(8.11)

Po dostatečně době je \(dN/dt = \text{konst.} = B \), a tedy

\[
\dot{\varepsilon}_{\varepsilon} = B \sigma_{n}
\]
(8.12)

Zde vystupující velikosti konstant je možno stanovit z experimentů. Funkci \(\sigma(t) \) lze nyní určit pomocí (8.10) a křivk tečení při různých napětích.

Je-li okamžitá deformace pružná, pak celková deformace je

\[
\varepsilon = \frac{\sigma}{E} + \varepsilon_{\varepsilon} \frac{\dot{\varepsilon}}{\dot{\varepsilon}}
\]
(8.13)

Závažnou nevýhodou této teorie je, že ve výsledném výrazu (8.13) vystupuje jen parazmetr \(\varepsilon_{\varepsilon} \); velikost deformace tedy není nezávislá na volbě počítku. Potom vypočty pro případy rychlé se měnití zatížení a odelehčení možou věst k jeho významným závěrům. Naopak výhodou je, že se využívají křivky tečení získané příslušným vyhodnocením experimentů.
8.3.3 Teorie tečení

Zde se vychází ze znalosti (pro $T = \text{konst}$.)

$$F \left(\mathbf{\varepsilon}_p , \dot{\mathbf{\varepsilon}} , t \right) = 0$$ \hspace{1cm} (8.14)

Za předpokladu podobnosti křivek tečení plyne z (8.11)

$$\dot{\mathbf{\varepsilon}}_p = \mathbf{\varepsilon}^0 \cdot B \left(t \right)$$ \hspace{1cm} (8.15)

kde $B(t)$ je klesající funkce nabývající kladných hodnot; při stacionárním creepu je $B(t) = B_1 = \text{konst.}$

Rychlost celkové deformace potom je (s uvážením (8.9), (8.13) a (8.15))

$$\mathbf{\varepsilon} = \frac{\dot{\mathbf{\varepsilon}}}{\mathbf{\varepsilon}} + \mathbf{\varepsilon}^0 \cdot B \left(t \right)$$ \hspace{1cm} (8.16)

I zde vystupuje ve výslednému výrazu čas, nevýhody této teorie jsou proto stejné jako u předchozí teorie stárnutí.

8.3.4 Teorie zpevnění

Tato teorie předpokládá existenci závislosti (pro $T = \text{konst}$.)

$$F \left(\mathbf{\varepsilon}_p , \dot{\mathbf{\varepsilon}}_p , \mathbf{\varepsilon} \right) = 0$$ \hspace{1cm} (8.17)

Nejčastěji se používá její variantu, podle níž je

$$\dot{\mathbf{\varepsilon}}_p = \mathbf{\varepsilon}^0 \cdot C \cdot \mathbf{\varepsilon}^b$$ \hspace{1cm} (8.18)

kde veličiny a, b, C jsou pouze funkcemi teploty. Z (8.18) plyne, že s růstem deformace $\dot{\mathbf{\varepsilon}}_p$ klesá její rychlost - jako by materiál zpevňoval (odtuč název této teorie).

Integraci (8.18) pro případ $\mathbf{\varepsilon} = \text{konst.}, T = \text{konst.}$ (a při $\mathbf{\varepsilon}_p = 0$ pro $t = 0$) dostaneme

$$\mathbf{\varepsilon}_p = \left[\left(1 + a \right) \cdot C \cdot \mathbf{\varepsilon}^b \cdot t \right]^{\frac{1}{1+b}}$$ \hspace{1cm} (8.19)

Na rozdíl od předchozích dvou teorií nevystupují ve výslednému výrazu (8.19) veličiny, které by byly funkcemi času.

8.3.5 Teorie dědečení

8.3.6 Model Lopina a Pospíšila

Tento model je možno zařadit do skupiny modelů využívajících jako proměnnou "poškození materiálu" D. Na začátku provozu je $D = 0$, lomu je pak dosaženo při $D = 1$.

17"
Na základě teorie dislokací odvodil Lepín pro rychlost creepové deformace výraz \[(8.20) \]
\[
\frac{d \varepsilon}{dt} = \dot{\varepsilon} = m \cdot \varepsilon^{1-n} \cdot \exp \left[-\alpha \varepsilon_0 \left(1 + \left(k_1 + k_2 \right) \varepsilon \right) \right]
\]

kde
- \(m \) je součinitel mající charakter měřítka \(\text{[s}^{-1}] \),
- \(n \) je součinitel zpevnění,
- \(\alpha \) je součinitel charakterizující energeticky fluktuční vlastnosti materiálu při konstantní teplotě,
- \(\varepsilon_0 \) je nominální napětí vztázané na počáteční průřez,
- \(k_1 \) je geometrický součinitel růstu napětí (pro tan je \(k_1 = 1 \), pro tlak \(k_1 = -1 \)),
- \(k_2 \) je součinitel deformáčního poškozování.

Rovnice \((8.20) \) v sobě spojuje dva fyzikální děje působící proti sobě - a to proces deformáčního zpevnění (s rostoucí plastickou deformací rostoucí odporem proti deformaci a tudíž klesá rychlost deformace) a proces růstu efektivního napětí (jak vznikem příčné kontrakce materiálu, tak i vznikem a spojováním kavit a ostatními degradacemi procesy).

Na základě analyzy experimentálních dat upravil Pospíšil tento model na tvar
\[(8.21) \]
\[
\dot{\varepsilon} = m \cdot \varepsilon^{1-n} \cdot \exp \left[-\alpha \varepsilon_0 \left(1 + k_1 \varepsilon + k_2 \right) \right]
\]

kde \(K \) je faktor růstu efektivního napětí v důsledku kumulace poškození (faktor poškození). Lze jej vyjádřit kombinovaným pravidlem poškození při creepu:
\[(8.22) \]
\[
K = \int_0^t \left(k_2 \dot{\varepsilon} + k_3 \varepsilon_2 \varepsilon \right) dt
\]

kde \(k_3 \) je nově zavedený součinitel časového poškozování. S výjimkou \(k_1 \) jsou všechny parametry rovnic \((8.21), (8.22) \) funkci teploty.

K porušení součásti potom dochází za dobu \(t_c \), kdy dosáhne nakumulované poškození mezni hodnoty
\[(8.23) \]
\[
K_1 = \int_0^{t_c} \left(k_2 \dot{\varepsilon} + k_3 \varepsilon_2 \varepsilon \right) dt = k_2 \dot{\varepsilon} \varepsilon_0
\]

kde \(\varepsilon_0 \) je logaritmická tažnost při krátkodobé tahové zkoušce.

Spojením rovnic \((8.21) \) a \((8.22) \) dostaneme základní integrodiferenciální rovnici tečení, kterou je možno integrovat pro získání křivky životnosti (doby do porušení) \(\text{(viz [113], [114])} \).

8.4 POSOUZENÍ MEZNIHO STAVU CREEPU

8.4.1 Úvod

Stejně jako u předchozích mezních stavů je i zde kvalita posouzení spolehlivosti značně závislá na úplnosti a jakości vstupních údajů a to především o provozním namáhání a materiálových vlastnostech. V souvislosti s namáháním je důležitý jeho časový průběh (charakter změn) stejně tak jako průběh (změny) provozních teplot (uvažme jejich značný vliv na životnosti) a povaha pracovního prostředí. Tyto faktory totiž především určují soubor mezních stavů, kterým je nezbytně nutno věnovat pozornost. Vdaném konkrétním případě pak creep nemusí být jediným ne- bo rozhodujícím mezinním stavebním, ale může působit též v interakci s jinými mezními
stavy. O tom, zda bude rozhodovat creep, křehký lom, nízkokmitová nebo tepelná ĎÁNA monohou poskytnout cenné informace praktické zkušenosti a rozhory provozních lomů.

Ze souboru materiálových vlastností jsou potřebnými údaje mež tečení, mez pevnosti při tečení a další creepové charakteristiky (viz kap. 8.2) pokud možno včetně údajů o jejich rozptýlu. Při interakci creepu s jinými mezními stavy toto požadavky se ještě dále rozšiřují.

V závislosti na požadavcích kladených na posouzení je potom možné je uskutečnit na dvou úrovních: nižší úroveň je založena na koncepci dovolených namáhání, vyšší úroveň využívá deformačních charakteristik. Využití lomové mechaniky ještě nedoznalo takového rozšíření jako u ÚNavy.

8.4.2 Koncepce dovolených namáhání

Tato koncepce tvořila základ téměř všech pevnostních výpočtů na creep do pa-

desátých let. Jako základní materiálové charakteristiky využívá mezní stadium při tečení R_mT a mez tečení T (viz obr. 116 a 117).

Pří jednoosé napajatosti spočívá posouzení spolehlivosti ve zjištění velikosti

bezpečnosti

\[k_mT = \frac{R_mT}{G} \] nebo \[k_T = \frac{R_T}{G} \] (8.24)

Tím je s potřebnou zárukou zajištěna požadovaná doba života a velikost deforma-
mace.

Toto deterministické posouzení využívá mediánových křivek životnosti, získaných regresní analýzou experimentálních výsledků pro pravděpodobnost dosažení mezního stavu rovnou 50%. Pří znalosti statistických charakteristik stochastické-
ho namáhání a rozptýlu křivky životnosti, může být toto posouzení provedeno na
vyšší úrovni a vyústit v určení spolehlivostní funkce doby do lomu.

Při praktickém posuzování se oproti nejjednoduššímu případu (8.24) vykryjí
některé komplikace související s proměnností namáhání jak po průběhu, tak i v čase
a s víceosým stavem napjatosti.

1. Proměnnost napětí po průběhu

a) ohýbaný prut

Při ohybu prutu dochází k relaxaci napětí v jeho krajních vrstvách. V této

souvislosti se zavádí pojem referenčních (rusky "bazisnych") napětí (viz [116],
s. 138): je to napětí, které by na hladké tyči vyvolalo stejnou deformaci jako
v uvažovaném tělese s nehomogenní napjatostí.

b) vliv vrubu

I zde se předpokládá relaxace špiček napětí, takže posouzení se provádí na
základě nominálního nebo referenčního napětí.

3. Proměnnost napětí v čase

V tomto případě se používá lineární hypotéza kumulace poškození

\[D = \frac{t}{T} + \frac{1}{t} = 1 \] (9.25)
kde \(t \) je doba působení i-tého stupně zatížení,
\(t_{\text{r}} \) je odpovídající doba do porušení.

3. Víc esošý stav napjatosti

- Tato skutečnost se respektuje používáním různých podmínek - nejčastěji Huber-Mises-Henckynho.

8.4.3 Využití deformacních charakteristik

V úvahu přicházejí:

1. izochronní creepové křivky

Tyto křivky vyjadřují závislost celkové deformace na napětí pro konstantní teplotu a čas (obr. 118). Využití těchto křivek je snadné v rámci teorie stárnutí (viz kap. 8.3.2).

2. konstitutivní creepové rovnice

Tyto rovnice se zavádějí do praxe pevnostních výpočtů až v posledních letech. Uplatnění nalézají především ve spojení s MKP. Analytickými metodami (viz např. [116]) lze řešit pouze některé vybrané problémy, zpravidla s jednoduššími konstitutivními rovnicemi.

Při použití MKP je možno uvažovat především dva typy úloh:

a) řešení elasto-visko-plastické úlohy; dosud se však málo využívá (omezené možnosti výpočetní techniky, pracná příprava dat),
b) řešení elastické úlohy pomocí MKP a následně přibližné řešení creepových deformací. Zároveň přibližné řešení využívající Neuberovy hyperboly (viz kap. 5.4.32) ve spojení s izochronními křivkami navrhl Ugorskij. Pro creep je potom zhotovil Popšil [118].

Při vícestupňovém zatěžování je nutno uvažovat i kombinaci dílčích poškození.

Kromě již uvedeného vztahu (8.25) se používá

\[
D = \sum_{i=1}^{n} \frac{\varepsilon_i}{\varepsilon_{t_i}}
\]

kde \(\varepsilon \) je logaritmická tažnost nebo kombinovaná podmínka.

\[
D = C_1 \sum_{i=1}^{n} \frac{1}{t_{i}} + C_2 \sum_{i=1}^{n} \frac{\varepsilon_{t_{i}}}{\varepsilon}
\]

8.4.4 Použití lomové mechaniky

Pro popis chování trhlin v konstrukci při creepu je možno použít zákonitost časové závisle lomové mechaniky (time dependent fracture mechanics). Řídicím parametrem tohoto procesu může být součinitel intenzity napětí \(K \); experimenty potvrzují jeho využitelnost.
u rozměrných těles a malých zatížení (v tomto případě je doba růstu trhliny mnohem větší než doba do její iniciace). Toto elastické řešení neuvažuje relaxaci napětí na čele trhliny. Rychlost růstu trhliny může být určena vztahem

\[\nu = \frac{da}{dt} = A \left(\frac{K - K_p}{K_m - K} \right)^n \]

(8.28)

kde \(K_p, K_m \) jsou ohraničení a mezní hodnota součinitele intenzity napětí.

- \(J^- \) integrál; zde se uvažuje elasto-plastický stav napjatosti v okolí trhliny, nikoliv však zde probíhající relaxace napětí při tečení;

- parametr \(C(t) \) nebo jeho limitní hodnota \(C^\infty = J^- \) (časová derivace \(J^- \) integrálu) pro \(t \to \infty \). Zde je již uvažována relaxace napětí na čele trhliny vlivem probíhající creepové deformace. Parametrem \(C(t) \) je vyjádřen tento pokles napětí s časem. Při krátkých časech je creepová zóna malá; při dlouhých časech se rozšíří přes celé těleso, napěťová deformací poměry se blíží stacionárnímu stavu, \(C \) přestává být závislý na čase.

- referenční napětí.

O tom, který z těchto parametrů bude řídícím rozhodující podmínky zatížování (rovinná napjatost, roviná deformace, teplota, napětí) a strukturní stav. Pomůckou k tomu jsou mapy loMOVých mechanismů a kriteriová hodnota bezrozměrné rychlosti \(|119| \).
LITERATURA

[32] Holzmann, M. - Man, J.: Vztah mezi tranzitní teplotou nulové houževnatosti \(t_{NDT} \) a tranzitní teplotou vzhledu lomu \(t_{50\%} \) při zkoušce vrubové houževnatiosti. Kovové materiály, 17, 1979, č. 2, s. 250-254.

[34] Holzmann, M.: Problematika lomové houževnatosti při zastavení trhliny \(K_{IA} \). Zváraní, 27, 1978, č. 5, s. 134-140.

[40] Holzmann, M. - Vlach, B. - Man, J.: Vztah teploty \(t_{NDT} \) a dynamické lomové houževnatosti. Kovové materiály, 18, 1980, č. 5, s. 635-639.

- 180 -

[113] Pospíšil, B.: Konstituční rovnice pro creep a relaxaci a jejich vztah ke kumulaci poškození. Strojírenství, 30, 1980, č. 9, s. 546-551.

OBSAH

1. **OVD** ... 3

2. **MEZNÍ STAVY MATERIÁLU A KONSTRUKCÍ** 7
 2.1 Pojem "mezní stav" ... 7
 2.2 Klasifikace mezních stavů 9
 2.3 Mezní stavový v pvnostnich výpočtech 10
 2.4 Mechanická teorie mezních stavů 13
 2.41 Hlediska při studiu mezních stavů 13
 2.42 Stavové a materiálové charakteristiky 14
 2.43 Interakční prostor 16
 2.44 Pracovní stavy a zatěžovací cesty 16
 2.5 Výpočtové modely mezních stavů 17

3. **SPOLEHLIVOST MECHANICKÝCH SOUSTAV A JEJÍ CHARAKTERISTIKY** 19
 3.1 Jevy, stavy a činnosti výrobků 19
 3.2 Pojem "spolehlivost" 21
 3.3 Ukazatele spolehlivosti 24
 3.31 Pozorované proměnné veličiny 24
 3.32 Ukazatele bezporuchovosti 25
 3.33 Ukazatele životnosti 27
 3.4 Řešení spolehlivosti - základní úvahy 27
 3.41 Úvod ... 27
 3.42 Základní návrhové koncepce 28
 3.43 Způsoby interpretace bezpečnosti 29
 3.44 Obecný přístup k řešení provozní spolehlivosti . 33
 3.5 Základní teoretické směry řešení spolehlivosti mechanických soustav 35
 3.51 Pravděpodobnostní analýza spolehlivosti 35
 3.52 Fenomenologická teorie spolehlivosti 37
 3.53 Interferenční teorie spolehlivosti 37
 3.54 Syntéza lomové mechaniky a spolehlivosti 40
 3.55 Komplexní teorie spolehlivosti 42

4. **LOMOVÁ MECHANIKA** .. 42
 4.1 Úvod .. 42
 4.2 Koncepce součinitele intenzity napětí 46
 4.21 Statická iniciace trhliny 46
 4.211 Napětí a deformace u kořene trhliny 46
 4.212 Určení součinitele intenzity napětí 50
 4.213 Plastifikace u kořene trhliny 57
 4.214 Lomová houževnatost K_{IC} 60
 4.22 Dynamická lomová mechanika 62
 4.221 Dynamické zatížení stojící trhliny 62
 4.222 Růst a zastavení trhliny 64
 4.23 Vliv prostředí na vznik křehkého lomu........ 66
<table>
<thead>
<tr>
<th>Str.</th>
<th>4.24</th>
<th>Odhady lomovéhouzelnosti</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.25</td>
<td>Referenčníkřivky lomovéhouzelnosti</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td>Koncepcie hustotydeformačníenergie</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td>Koncepcie kritickéhořezvěřenítrhliny</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>4.41</td>
<td>Podstataateoretickézákladykoncepcie</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>4.42</td>
<td>Určeníkritickéhořezvěřenítrhliny</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>4.43</td>
<td>Stanoveníkritickévelikostitrhliny</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>Koncepcie J-integrálu</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>4.51</td>
<td>Teoretickézákladykoncepcie</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>4.52</td>
<td>Metodyurčení J-integrálu</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>4.53</td>
<td>Lomováhouzelnost J_{IC}</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>4.54</td>
<td>Stanoveníkritickévelikostivady</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td></td>
<td>Metoda dvoukriterií</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td></td>
<td>Subkritickýrůsttrhlinypřijednosměrnémzatížení</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>4.71</td>
<td>Mechanismyrozvojeporušení</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>4.72</td>
<td>Iniciace subkritickéhoporušení</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>4.73</td>
<td>Subkritickýrůsttrhliny</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>ÚnavovéporušeníSOUČASTÍ</td>
<td>94</td>
</tr>
<tr>
<td>5.11</td>
<td></td>
<td>Základnípojmy</td>
<td>94</td>
</tr>
<tr>
<td>5.12</td>
<td></td>
<td>Únavováživotnostkonstrukcí</td>
<td>94</td>
</tr>
<tr>
<td>5.13</td>
<td></td>
<td>Charakteristikacyklickéchnamáhání</td>
<td>95</td>
</tr>
<tr>
<td>5.14</td>
<td></td>
<td>Stadiaúnavového procesu</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>Cyklickédeformačnívlastnosti</td>
<td>98</td>
</tr>
<tr>
<td>5.21</td>
<td></td>
<td>Růstúnavovýchtrhlin</td>
<td>99</td>
</tr>
<tr>
<td>5.22</td>
<td></td>
<td>Mechanismus růstu a zastavenítrhlin</td>
<td>99</td>
</tr>
<tr>
<td>5.23</td>
<td></td>
<td>Podmínky zastavenítrhliny</td>
<td>100</td>
</tr>
<tr>
<td>5.24</td>
<td></td>
<td>RůsttrhlinypřeeLASTICKÉchnamáhání</td>
<td>101</td>
</tr>
<tr>
<td>5.25</td>
<td></td>
<td>Zkouškyrstu únavovýchtrhlin</td>
<td>102</td>
</tr>
<tr>
<td>5.26</td>
<td></td>
<td>Růsttrhlinpřeproměnnéamplitudezamáhání</td>
<td>103</td>
</tr>
<tr>
<td>5.27</td>
<td></td>
<td>RůsttrhlinpřeeLASTO-PLASTICKÝCHDEFORMACÍCH</td>
<td>103</td>
</tr>
<tr>
<td>5.3</td>
<td></td>
<td>Problematika jákyhýchtrhlin</td>
<td>104</td>
</tr>
<tr>
<td>5.31</td>
<td></td>
<td>Křivkyživotnosti</td>
<td>105</td>
</tr>
<tr>
<td>5.32</td>
<td></td>
<td>Křivkyživotnostipřeměkkémzatížování</td>
<td>105</td>
</tr>
<tr>
<td>5.33</td>
<td></td>
<td>Křivkyživotnostipřetvrkémzatížování</td>
<td>108</td>
</tr>
<tr>
<td>5.4</td>
<td></td>
<td>Vlivkoncentrace napětí a deformace naúnavu</td>
<td>110</td>
</tr>
<tr>
<td>5.41</td>
<td></td>
<td>Úvod</td>
<td>110</td>
</tr>
<tr>
<td>5.42</td>
<td></td>
<td>Koncepcenominálníchnapětí</td>
<td>111</td>
</tr>
<tr>
<td>5.421</td>
<td></td>
<td>Koncentrace napětí a deformace v elasticke oblasti</td>
<td>111</td>
</tr>
<tr>
<td>5.422</td>
<td></td>
<td>Vlivvrubupřetvalépevnosti</td>
<td>112</td>
</tr>
<tr>
<td>5.423</td>
<td></td>
<td>Vlivvrubupřčasovanépevnosti</td>
<td>114</td>
</tr>
<tr>
<td>5.43</td>
<td></td>
<td>Koncepcelokálníchnapětí a deformací</td>
<td>115</td>
</tr>
<tr>
<td>5.431</td>
<td></td>
<td>Úvod</td>
<td>115</td>
</tr>
<tr>
<td>5.432</td>
<td></td>
<td>Neuberova koncepce</td>
<td>113</td>
</tr>
<tr>
<td>5.433</td>
<td></td>
<td>Koncepciekvivalentníenergie</td>
<td>120</td>
</tr>
<tr>
<td>Str.</td>
<td>5.5 Výpočtové posouzení únavové životnosti</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>5.51</td>
<td>Ovod</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>5.52</td>
<td>Životnost při konstantní amplitudě odezvy</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>5.521</td>
<td>Koncepce nominálních napětí</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>5.5211</td>
<td>Deterministický přístup</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>5.5212</td>
<td>Pravděpodobnostní přístup</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>5.522</td>
<td>Koncepce lokálních napětí a deformací</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>5.53</td>
<td>Životnost při proměnné amplitudě odezvy</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>5.531</td>
<td>Analýza časových průběhů napětí a deformací</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>5.532</td>
<td>Hypotézy kumulace poškození</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>5.5321</td>
<td>Ovod</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>5.5322</td>
<td>Koncepce nominálních napětí</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>5.5323</td>
<td>Koncepce lokálních deformací</td>
<td>141</td>
<td></td>
</tr>
</tbody>
</table>

6. HODNOCENÍ ODOLNOSTI KONSTRUKcí PROTI KŘEHKÉMU PORUŠENÍ V ETAPĚ JEHICH NÁVRHU 141

<table>
<thead>
<tr>
<th>Str.</th>
<th>6.1 Problematica hodnocení ocelí a zajištění integrity konstrukcí</th>
<th>141</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Koncepce tranzitních teplot</td>
<td>144</td>
</tr>
<tr>
<td>6.21</td>
<td>Tranzitní teplotní chování ocelí</td>
<td>144</td>
</tr>
<tr>
<td>6.22</td>
<td>Přehled zkoušek tranzitních teplot</td>
<td>144</td>
</tr>
<tr>
<td>6.23</td>
<td>Kriterium vrubové houševnatosť</td>
<td>147</td>
</tr>
<tr>
<td>6.24</td>
<td>Teplota T_NDT</td>
<td>147</td>
</tr>
<tr>
<td>6.25</td>
<td>Teplota zastavení trhliny</td>
<td>148</td>
</tr>
<tr>
<td>6.26</td>
<td>Lomové diagramy</td>
<td>149</td>
</tr>
<tr>
<td>6.27</td>
<td>Využití koncepce tranzitních teplot</td>
<td>151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Str.</th>
<th>6.3 Koncepce lomové mechaniky</th>
<th>152</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.31</td>
<td>Všeobecně</td>
<td>152</td>
</tr>
<tr>
<td>6.32</td>
<td>ASME Code III</td>
<td>153</td>
</tr>
<tr>
<td>6.33</td>
<td>Norský předpis pro mořské plošiny</td>
<td>154</td>
</tr>
<tr>
<td>6.34</td>
<td>Eurocode č. 3 pro ocelové konstrukce</td>
<td>155</td>
</tr>
<tr>
<td>6.35</td>
<td>Návrh VÜZ pro ocelové konstrukce</td>
<td>157</td>
</tr>
<tr>
<td>6.36</td>
<td>Britský předpis PD 6493</td>
<td>158</td>
</tr>
</tbody>
</table>

7. METODIKA POSOUZENÍ ZJIŠTĚNÉ VADY TYPU TRHLINY 159

<table>
<thead>
<tr>
<th>Str.</th>
<th>7.1 Ovod</th>
<th>159</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Druhy vad</td>
<td>160</td>
</tr>
<tr>
<td>7.3</td>
<td>Všeobecný postup při posouzení</td>
<td>161</td>
</tr>
<tr>
<td>7.4</td>
<td>Kritická velikost vady</td>
<td>164</td>
</tr>
<tr>
<td>7.41</td>
<td>Všeobecně</td>
<td>164</td>
</tr>
<tr>
<td>7.42</td>
<td>Posouzení podle ASME XI</td>
<td>164</td>
</tr>
<tr>
<td>7.43</td>
<td>Posouzení podle PD 6493</td>
<td>165</td>
</tr>
<tr>
<td>7.5</td>
<td>Úbytková životnost</td>
<td>166</td>
</tr>
</tbody>
</table>

8. PEVNOST A ŽIVOTNOST PŘI CREEPU ... 169

<table>
<thead>
<tr>
<th>Str.</th>
<th>8.1 Ovod</th>
<th>169</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Zkoušky tečení a regresní závislosti</td>
<td>169</td>
</tr>
<tr>
<td>8.3</td>
<td>Konstitutivní rovnice</td>
<td>171</td>
</tr>
<tr>
<td>8.4</td>
<td>Posouzení mezního stavu creepu</td>
<td>173</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>8.41</td>
<td>Ovod</td>
<td>173</td>
</tr>
<tr>
<td>8.42</td>
<td>Koncepce dovolených namáhání</td>
<td>174</td>
</tr>
<tr>
<td>8.43</td>
<td>Využití deformacních charakteristik</td>
<td>175</td>
</tr>
<tr>
<td>8.44</td>
<td>Použití lomové mechaniky</td>
<td>175</td>
</tr>
</tbody>
</table>